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A new evolutionary model with the network structure named Genetic Network Programming (GNP) has
been proposed recently. GNP, that is, an expansion of GA and GP, represents solutions as a network structure
and evolves it by using “offline learning (selection, mutation, crossover)”. GNP can memorize the past action
sequences in the network flow, so it can deal with Partially Observable Markov Decision Process (POMDP)
well. In this paper, in order to improve the ability of GNP, @ learning (an off-policy TD control algorithm)
that is one of the famous online methods is introduced for online learning of GNP. @) learning is suitable for
GNP because (1) in reinforcement learning, the rewards an agent will get in the future can be estimated, (2)
TD control doesn’t need much memory and can learn quickly, and (3) off-policy is suitable in order to search
for an optimal solution independently of the policy. Finally, in the simulations, online learning of GNP is
applied to a player for “Prisoner’s dilemma game” and its ability for online adaptation is confirmed.
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1. Introduction

Evolutionary processes of organisms are very compli-
cated and sophisticated. They are based on the mecha-
nisms such as learning, selection and evolution, so that
they can harmonize well with environments.

“Genetic Algorithm (GA) ®” and “Genetic Program-
ming (GP) @ ®” are typical methods that are based on
the evolutionary processes of organisms. Because the
conventional control theory should obey the rules prede-
fined in advance and it cannot be adapted to the dynam-
ical environments rapidly, the evolutionary computation
overcoming the above problems attracts the attention.

GA and GP mainly applied to optimization problems
represent solutions as a string and a free structure, re-
spectively and evolve them. GP was devised later in
order to expand the representation ability of GA and to
solve more complex problems. But, GP might be diffi-
cult to search for a solution because of the bloat of its
tree structure, which expands the depth of the tree un-
necessarily although it is sometimes useful for expanding
a search space to find a solution.

Recently, a new evolutionary computation method
named “Genetic Network Programming (GNP)” was
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proposed @~® GNP, that is, an expansion of GA and
GP represents solutions as a network structure. Since
GNP can memorize the past action sequences in the
network flow and can deal with Partially Observable
Markov Decision Process (POMDP) well, GNP was ap-
plied to complicated agent systems involving uncertainty
such as decision-making problems. But, conventional
GNP are based on “offline learning”, that is, after GNP
is carried out to some extent, it is evaluated and evolved
according to rewards given by an environment. How-
ever, the adaptation to dynamical environments might
be difficult because in offline learning if the changes of
an environment occurred, offfine learning must do many
trials to evaluate GNP and evolve it again and again,
therefore, it cannot keep up with the changes of envi-
ronments quickly.

In this paper, @ learning ” which is one of the fa-
mous online learning methods is introduced for the on-
line learning of GNP. GNP changes its structure consid-
ering the rewards given one after another, so that it can
change its solution (behavior sequences) immediately af-
ter the environmental changes that cause a bad result.

In this paper, Prisoner’s dilemma game is used for
simulations and the performance of online learning is
studied. Prisoner’s dilemma game needs two players and
they compete with each other to get high scores. First,
GNP having a game strategy competed with the famous
strategies of Prisoner’s dilemma game and showed the
good performances. Then, two GNPs competed with
each other and showed the online adjustment ability on
their strategies considering the opponent’s strategy in



order to get higher scores.

This paper is organized as follows. In the next sec-
tion, the details of Genetic Network Programming are
described. Section 3 explains Prisoner’s dilemma game
and shows the results of the simulations. Section 4 is
devoted to conclusions.

2. Genetic Network Programming (GNP)

In this section, Genetic Network programming is re-
viewed briefly. GNP is an expansion of GP in terms of
gene structures. The original motivation of developing
GNP is based on the more general representation ability
. of graphs than that of trees.

2.1 Basic structure of GNP First, GP is ex-
plained in order to compare it with GNP. Fig.1 shows
a basic structure of GP. GP can be used as a decision
making tree when non-terminal nodes are if-then type
functions and all terminal nodes are some concrete ac-
tion functions. A tree is executed from the root node
to a certain terminal node in each iteration, therefore,
it might fall into the deadlocks because the behaviors of
agents made by GP are determined only by the environ-
ments at the current time. Furthermore, GP tree might
cause the severe bloat that makes search for solutions
difficult because of the unnecessary expansion of depth.

Next, the characteristics and abilities of GNP are ex-
plained using Fig.2 which shows the basic structure of
GNP. Now, it is supposed that agent behavior sequences
are created by GNP.

ANANNOYIANA

@ root node
non terminal node

Q terminal node

Fig. 1. Basic structure of GP.

INHANWNOYIANA

O Processing node
O  Judgement node
«  Time delay
Fig.2. Basic structure of GNP.
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e Function Sets GNP has a number of Judgement
nodes and Processing nodes. Judgement nodes are if-
then type decision functions or conditional branch de-
cision functions. They return judgement results for as-
signed inputs and determine the next node GNP should
take. Processing node determines an action/processing
an agent should take. Contrary to judgement nodes,
processing nodes have no conditional branch. The GNP
we used never causes bloat because of the predefined
number of nodes, although GNP can evolve pheno-
types/genetypes of variable length. Because the network
structure of GNP can re-use the nodes unlike GA and
GP, if GNP needs to use certain Judgement/Processing
nodes many times to achieve a goal, GNP increases the
connections to those nodes in the learning process and
can re-use them again and again. Therefore, even if the
number of nodes is predefined and smaller than GP pro-
grams, GNP can perform well by making effective net-
work connections based on re-using nodes. So, we don’t
have to prepare the excessive number of nodes. As a
result, we can easily determine the number of nodes ex-
perimentally.

e Memory function of network  Although GNP
is booted up from the start node that is predefined in
advance arbitrarily, there are no terminal nodes. After
the start node, the current node is determined according
to the connections of the nodes and judging results of
judgement nodes. In this way, GNP system is carried
out according to the network flow without any terminal,
that is, the determination of the current node is influ-
enced by the node transitions of the past. So the network
structure itself implicitly has a memory function of the
past actions of an agent.

e Connection constraint As described before,
Processing nodes and Judgement nodes are connected
by directed links with each other like networks. But,

~ there are some constraints on connection rules. Firstly,

plural connections to a Processing node are available.
On the other hand, there should be only one connection
to a Judgement node. This constraint is introduced in
order to judge environment correctly (Fig.3).

In the case of Fig.3(a), the judgement result of node
ko (next node: l,) is determined by the results of nodes
iq, jo and k, (only one judgement route/process). But

b < <
; / A~/
\ \ \
< < <
(a) a connection to' a Judgement node
routel ” P
’ ’
\
route2 *

(b) plural connections to a Judgement node

Fig.3. Connection rules.
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in the case of (b), node k. cannot know which routes
(route 1 or route 2) affects the judgement result of k.,
i.e. if we allow plural connections from some nodes to a
Judgement node, the judgement on which node to take
next is not determined uniquely. So, the correct judge-
‘ment cannot be done.

e Time Delays GNP can have time delays. d; is
the time delay GNP spends on judgement or processing
of node i, and d;; is the one GNP spends on transitions
from node 7 to j. In the real world problems, when
agents judge environments, prepare for actions and take

actions, agents need to spend time. For example, when

a man is walking and there is a puddle before him, he
will avoid it. At that time, it takes some time to judge
the puddle (d; for node judgement), to put judgement
into action (d;; for transition from judgement for node
processing) and to avoid the puddle (d; for node pro-
cessing). However, d; and d;; are not used in this paper
because the purpose of the simulations using Prisoner’s
dilemma game is to make and change strategies adapt-
ing to the opponent behavior and the time spent for
judgement or processing does not need to be considered.
Time delay is necessary in the case of practical applica-
tions. When various judgements and processes are done
in real applications, GNP should change its structure
considering the time it spends. Time delay is listed in
each node gene which will be described later because it
is the unique attribute of the node.

2.2 Genotype expression of GNP node The
whole structure of GNP is determined by the combina-
tion of the following node genes. A genetic code of node
i (1 <4< nl) is represented as Fig.4.

K, represents the node type, K;=0 means Process-
ing node, K;=1 means Judgement node. C; shows the
code number GNP judges or processes and it is rep-
resented as a unique number shown in the LIBRARY.

noa'ei|Ki|Ci,di‘Fi|di1‘Qli41EQ?IEQI‘CI:E I """"

..... [ [T oG o [

LIBRARY
for Judgement Node

for Processing Node

1:
2 PR 2 -

n —_— T

where, K; : Judgement/Processing classification

0: Processing node
1 : Judgement node

C; : code number of Judgement/Processing

d; : time delay spent for
judgemgnt/processing

F; : Flag : condition of connections to node z
0: free l:busy

d;; : time delay spent for the transition
from node ¢ to j

A B [0}
Qij:Qij:Qij:"' :

transition @ values from node % to j

Fig.4. Genotype expression of node i.

T Each node has a unique number from 1 to n, respectively, when
the number of nodes is n.
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d; is the time delay spent for judgement or processing.
F; is Flag of node ¢. If node ¢ can accept the connec-
tion from the other nodes, Flag is set at “0”, other-
wise “1”. Because Processing nodes can accept unlim-
ited connections, Flags of Processing nodes are always
“0”. On the other hand, Judgement node accepts only
one connection from the other nodes, so when a con-
nection has been built to a Judgement node, Flag of
the node becomes “1”, otherwise “0”. The concrete us-
age of Flags are described in Section 2.4.4. d;; means
time delay spent for the transition from node % to j.

5.0, Qf; ... means transition @ values from node i
to j. Judgement node determines which @ value is used
for selecting the transition according to judging results.
For example, if the result of judgement is “A”, GNP uses
Qg to select a transition and connect to a next node,
and if the result is “B”, it uses Qg Therefore, the num-
ber of Q%, 5, Qg, ... is the same as the number of the
results at judgement nodes. On the other hand, Process-
ing node has only Q;‘; because there are no conditional
states when processing.

2.3 Coding Example Fig. 5 shows a coding ex-
ample of GNP. Node 1 and 2 are the processing nodes
and Node 3 and 4 are the judgement nodes. The code of
each node (C;) is shown in the LIBRARY. GNP refers
all Q{;- of node 7 (1< 4,j <4), and the node j having the
maximum Q{}—value is connected from node i. Node
3 and 4 have two conditional branches, respectively, so
GNP also refers all Qg of Node 3 and 4, and connections
are made in the same way as the above. Since Node 3
has accepted a connection, Flag of Node 3 is 1. The
time delays are not used in this paper, so all d; and d;;
are set at 0.

Processing Node
- O—
! Judgement Node
|
Q value |004 <Y
=01 ? N
! ———p connection
! —— exists
I
| I — = —___ po connection
\\ Phenotype
node 1 node 2 node 3 noded
nodet [0 [ 1]0f0o] —F— T oloi]o loos]o oo
wode2 |0 [2]010]0for | = [oJes|o]on
node [ 1] 1]0 ] 1 ]ofasTol [0]oosios| F—— lo]o1io01
noded [ 11210 |0}0]0.1:0.040]0.050.02) 0]0.5:0.01] —+
see Genotype
LIBRARY
for Judgement Node for Processing Node
1: - 1:
A :
1 n

Fig.5. Coding example of GNP.



2.4 Online learning of GNP In this section,
we will explain how to calculate Q;;-values. In the of-
fline learning method that GA, GP and conventional
GNP @~ yses, many individuals calculate their fitness
values, and then genetic operations (selection, mutation,
crossover) are carried out to generate new populations.
This process is called One generation. But, offline learn-
ing cannot change its strategy until the current gener-
ation ends, while online learning of GNP is based on
() learning and learns its decision ‘making rules every
judgement /processing. Therefore, GNP can prevent the
useless trials under environmental changes.

2.4.1 Q learning (an off-policy TD control al-
gorithm) Q) learning calculates @ values which are
functions of state s and action a. @ values mean the
sum of the rewards an agent gets in the future, and the
update processes of them are implemented as follows.
When an agent selects an action a; in state s; at time ¢,
the reward r; is given and the state is changed from s,
t0 844+1. As aresult, Q(st, ax) is updated as the following
equation.

Q(St,@t) = Q(Staat)
+a ["'t +ymax Q(841,a) — Q(st, at)}

If the step size parameter « decreases according to
a certain schedule, @ values converge on an optimal
values after enough trials. The action selection which
has the maximum @ value becomes the optimal policy.
7(0 < v < 1) is a discount rate which shows how long
an agent considers the future rewards.

If an agent continues to select the actions having the
maximum ¢} value when the learning is not enough,
the action selection rules are not improved even though
there are still better ones. One of the method for over-
coming the above problem is “e-greedy”. This method
makes the agent select the random action by the prob-
ability of e, or select the action having the maximum
@ value by the probability of 1-s. e-greedy is a general
method for keeping a balance between exploitation of
experience and exploration. In this paper, &- greedy is
adopted for the action selection.

2.4.2 Relation between GNP and @ learning
In @ learning, state s is determined by the information
‘an agent can get, and action ¢ means the actual action
it takes. On the other hand, in GNP learning, a state
means the state after judging or processing and an ac-
tion means node transition. Fig. 6 shows an example
of node transition. The symbols “e” and the arrows
(transitions) “—” represent the states and the actions,
respectively. The state s and action @ are different from
the actual judgement and processing executed by judge-
ment node and processing node, respectively.

2.4.3 The reason for applying @ learning

(1) Once GNP is booted up from the start node, the
current node is transferred one after another without
any terminal node. Therefore, the framework of rein-
forcement learning that uses the sum of the discounted
future rewards is suitable for online learning of GNP.

(2) TD control needs only a maximum @ value in the

next state, therefore, much memory is not needed and
@ value is updated easily.

(3) Because GNP should search for an optimal solu-.
tion independently of the policy (e-greedy), off-policy is
adopted.

2.4.4 Node transition and Learning The fol-
lowing is the outline of online learning. The transition
begins from the start node that can be selected from all
the nodes arbitrarily and GNP executes the content of
the start node, then GNP selects a transition having a

- maximum @ value in all transitions and connects the
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start node and the next one. However, by the proba-
bility of €, GNP selects the transition randomly. After
GNP executes the content of the next node and a re-
ward is given, @ value is updated according to eq.(1),
so GNP connects the previous node with the one hav-
ing the largest € value from the previous one. But, if
the transition having a maximum @ value corresponds
to the judgement node whose Flag is “1”, then GNP se-
lects the transition having the second largest @ value.
Similarly, if the transition of the second largest @Q value
corresponds to the node with Flag “17, GNP selects the
third one. This process is repeated until the Flag “0”
node is found. After that, the transitions continue fol-
lowing the network flow.

The concrete processes are described using Fig.6.

There are n nodes including judgement nodes and pro-
cessing nodes, and each node has the number from 1 to
n, respectively. At time ¢, it is supposed that the cur-
rent node is node #(1 < i < n). Because node i is the
judgement node, it judges the current environment. In

AD

Qﬂ] /@ casel

@ ’ Q]ka ’
.5_11/ :
»(;]D( Q/sz/ k2

-S}z/

b QD)
.C‘ : -

case2

<:> : Judgement node

O

: Processing node

time t t+1

i jLj2 ki, k2 : node number (1< 1, j1, j2, k1, k2< n)
e o State st

(connection exists)
----------- * (no connection)

Fig. 6.

 action at

An example of node transition.
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this example, the result of the judgement could be A, B
or C and now B is supposed at time ¢. Then, the state
s; becomes SP, and the transition is selected according
to its transition Qf} values. But, by the probability of ¢,
GNP randomly selects the transition which corresponds
to a Flag “0” node.

e case 1 : next node is a processing node

If the transition which has le is selected, the next
node is processing node j;. GNP processes node j; and
gets the reward ;. Then, the time is changed to t+1 and
state s¢y1 becomes s7, decisively because the processing
nodes have no conditional state unlike judgement nodes.
If Q% is the maximum value among Q% ,, .. QN
this value is used to update Qf;-l as eq.(2). After that,
node i is connected to a Flag “0” node as described be-
fore. Then GNP selects the transition to k£ as an action
asy1, or selects the random transition to Flag “0” node
by the probability of &.

B _
g1

B } .........
71

® cage 2 : next node is a judgement node

If the transition which has Q52 is selected, the next
node is judgement node jo and GNP judges node ja.
However, since the actual action is not done at node
j2, the reward r; is not given. The time is changed to
t+1 and the state s.11 could be Sﬁ, SjB; or SJC’; accord-
ing to the judgement at node jo. It is supposed that
the result of the judgement is A in this example, then

S¢41 becomes sj‘; CIf Qﬁ k, i8 the maximum value among

3‘217 ey Qf;n, it is used for updating ng. The update
of Qf;-z is implemented as eq.(3). Similarly, the node ¢
is connected to a Flag “0” node. Then GNP selects the
transition to kg as an action a4 or selects the random
transition by the probability of e.

B
J2

Usually Q-learning assigns Q-values to all possible ac-
tions of any states, so when an agent gets the reward, Q-
learning updates the Q-value considering the state and
the action. There are some differences between GNP
and general Q-learning, because GNP has Judgemernt
Nodes and Processing Nodes. Here, one series of Judge-
ment nodes and the following Processing node are called
“ One Iteration” as is stated in Fig. 7. After GNP un-
derstands agents’ situation by one series of judgement
nodes, the next action is determined by the following
Processing node. So, the judgement for understanding

Q5 +alr+vQ%h, —

B _
ij2 T

A
Jaka

B
¢j2+0‘{

discounted reward-~"

yr o
“' . a
: : : : N : :\\ : : N : :
. . s , B .
previous processing . \ \, current processing
Y ] a

One Iteration

Fig.7. An example of the flow of One Iteration
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the situation is separated from the processing. As a re-
sult both Judgement and Processing nodes have their
own Q-values. We should evaluate the judgements and
processing in One Iteration equally because all Judge-
ment nodes and Processing node in One Tteration should
contribute to the reward equally. In other words, if we
use the discount rate v in Eq. (3), the more the judge-
ment nodes are used, the less the previous nodes obtain
discounted rewards. As a result, Judgement nodes would
not be used in the network flow. This has a bad influ-
ence on the system because enough judgements would
not be done in GNP. Therefore, the discount rate is not
used in Case 2.

2.5 Comparison between GNP and other
graph based evolutionary methods There have
been developed some graph based evolutional methods
such as PADO (Parallel Algorithm Discovery and Or-
chestration) ® and EP (Evolutionary Programming) .
PADO has both start node and end node in the net-
work and it mainly represents a static program. EP
is used for the automatic synthesis of Finite State Ma-
chines and in all states, state transitions for all inputs
have to be determined, therefore, the structure of EP
becomes complicated if the number of states increases.
On the other hand, GNP uses only the necessary infor-
mation for judging the environments, i.e. it can deal
with POMDP. Therefore, GNP could be compact even
if the system to solve is large enough.

3. Simulations

In this section, GNP is used as a player of “Prisoner’s
dilemma game”. The aim of this simulation is to con-
firm the effectiveness of the proposed online learning of
GNP. :

3.1 Prisoner’s dilemma game

e story : The police don’t have enough evidence to

indict two suspects for complicity in a crime. The
police approach each suspect separately. “If either
of you remains silent, the sentence for your crime be-
comes a two-year prison in spite of the insufficient
evidence. If you confess and your pal remains silent,
you are released and the crime of your pal becomes
a five-year prison. But, either of you confess, your
sentence becomes a four-year prison.”

From Table. 1, Profits can be 0, -2, -4 and -5, respec-
tively. In order to make them positive, 5 is added to each
profit, then the profit matrix shown in Fig.8 is obtained.
Silence is called “Cooperate(C)” because it shortens its
prison term.. Confession is called “Defect(D)” because
it is done in order for only one suspect to be released.
If the profits described by the symbols R, S, T and P in
the frame follow inequality (4), the dilemma arises. This

Table 1. Relation between Sentence and

Confession/Silence

Suspectl Suspect2  Sentence to suspectl

released
2-year prison
4-year prison
5-year prison

Confession Silence
Silence
Confession Confession

Silence Confession

Silence




suspect2
cooperate(C) defect(D)

;oaperate(C) ) 3 0
R S
suspectl
defect(D) 5 . ]
A

Fig.8.  Profit matrix (profit for suspectl).

Self-judgement node

self-judgement of
2 actions before

cooperation
in the case of C

&

in the case of D

Opponent-judgement node

opponent
~Judgement
of last action

in the case of C

SC
self-judgement =TS
.-SD\ of last action
in the case of D

‘Cooperation Processing node

©—

Defect Processing node

O

Fig.9. An example of GNP structure.

matrix is the famous one in many research on Prisoner’s
dilemma game. Therefore, the results in this paper are
calculated using Fig.8. In this simulation, players repeat
selecting Cooperation or Defect.
T>R>P>S

2R> S+ T

If the players have no information about their oppo-
nents and they select the action only once, Defect is
to be taken. In either case where the opponent takes
Cooperation or Defect, Defect gets a higher profit than
Cooperation. However, as the competition is repeated,
and the characteristic of the opponent comes out, GNP
can develop its strategy considering the past strategies
of the opponent and itself.

3.2 GNP for Prisoner’s dilemma game The
player of Prisoner’s dilemma game is regarded as an
agent using GNP. The nodes of GNP are

® Self-judgement node (judge the action taken by it-

self)

® Opponent-judgement node (judge the action taken

by an opponent) ‘

¢ Cooperation processing node (C) (take Coopera-

tion)

¢ Defect processing node (D) (take Defect)

Fig.9 shows an example of GNP structure for Pris-
oner’s dilemma game. The thick arrows show an exam-
ple of node transitions.

Each judgement node has two kinds of @ value, Q¢
and QP. QC is used when the past action of itself or
the opponent is “cooperation” (judgement result is C
and the state becomes sc). QP is used when the past
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action of them is “defect” (judgement result is D and
the state becomes s”). On the other hand, each pro-
cessing node has one kind of @ value, which differs from
a judgement node. After processing, if the next node
is a self-judgement node, GNP judges the last action
of itself, if an opponent-judgement node, it judges the
one of the opponent. If the same kind of judgement
node is executed again, GNP carries out the judgement
of the action taken two steps before. In case the same
kind of judgement nodes continues, GNP judges previ-
ous action one after another. After processing, if the
next node is a processing one, an agent competes using
the corresponding processing against the opponent. The
distinguished point of GNP is that we can determine au-
tomatically how much the past actions of its own and
opponent should be used. That is, GNP can learn how
many judgements are necessary to determine the next
effective action.

3.3 Simulation results In this simulation, firstly
GNP competes against Tit for Tat and Pavlov strategy
that are the fixed strategies because they are predefined
in advance and not changed. The purpose of these sim-
ulations is to show that GNP can learn the character-
istics of the opponents and can change its strategies to
get high scores. Next, two GNPs compete against each
other. This situation can be regarded as a game in a
dynamic environment because GNPs can change their
strategies each other. Therefore, GNPs should adapt to
the changes of the strategy of the opponents.

GNP competes under the following conditions.

the number of nodéS(N ) : 40
node number : Cooperation (1-5)

: Defect (6-10)

: Self-Judgement (11-25)

: Opponent-Judgement
(26-40)

0.99

:0.8

:0.05

: obtained by Fig.8

zero in the initial state

discount rate(7y) :

‘step size parameter(c)

13
reward(r)
@ values :

The competition is carried out for the predifined it-
erations after () values are initialized (all @) values are
zero at first). This process is called a trial.

3.3.1 Competition between GNP and Tit for
Tat

Tit for Tat :

® take Cooperation at the first iteration

® take the last action taken by the opponent

This strategy never loses a game by a wide margin
and gets almost the same average scores as the op-
ponent. Therefore, Tit for Tat is an admitted strong
strategy. For example, when many Prisoner’s dilemma
game strategies compete against each other, the strate-
gies might decrease their scores against others, but Tit

IEEJ Trans. EIS, Vol.123, No.3, 2003
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average score

it for Tat >>>>>
8000 12000
iteration

2.8
2.6
2.4
22
2
1.8
1.6 o

4000 16000 20000

Fig.10. Average score of competition between
GNP and Tit for Tat. :
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g
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& 008
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£ o004
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0 tensazzallolinnl
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node number
(e) from 10001 to 20000 iterations

Fig.11. Ratio of used nodes for specific intervals
in competition between GNP and Tit for Tat.

for Tat ends its competition with the same average as the
opponent. Therefore, Tit for Tat becomes the strongest
strategy as a whole. In this simulation, the competition
between GNP and Tit for Tat is done. The moving aver-
ages over 10 iterations are calculated and Fig.10 shows
the averages of these moving averages over 100 trials.
Fig.11 shows how often GNP used each node (ratio of
used nodes) for specific intervals and it is also the aver-
ages over 100 trials. Because Tit for Tat never loses by
a wide margin, the average scores of GNP and Tit for
Tat are almost the same and the lines of them are over-
lapped. As the competition is iterated, GNP gradually
gets the high scores because GNP used more Cooper-
ation Processing nodes than Defect ones as shown in
Fig.11. If GNP takes Defect, Tit for Tat takes it in the
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Table 2. Pavlov strategy.

Pavlov Opponent  Next action of Pavlov
Cooperation Cooperation Cooperation
Cooperation Defect Defect
© Defect Cooperation Defect

Defect Defect Cooperation

average score

::M_w“ et LI

Pavloy e
4000 8000

0.5
0 2000

6000
iteration

10000

Fig.12. Average score of competition between
GNP and Pavlov strategy.
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(c) from 3001 to 10000 iterations
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Fig.13. Ratio of used nodes for specific intervals
in competition between GNP and Pavlov strategy.

next step and the score is diminished. If GNP continues
to take cooperation, Tit for Tat also does so, therefore,
GNP learned the cooperative strategy in order to get
high scores. GNP also reduces the use of Judgement
node because GNP can understand the strategy of Tit
for Tat and it doesn’t need many Judgements.

3.3.2 Competition between GNP and Pavlov
strategy =~ Table. 2 shows Pavlov strategy. Pavlov
strategy decides the next action according to the com-
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Fig.14. Average score of competition between GNPs
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Fig. 15.

bination of the last actions of both strategies.

Fig.12 and 13 show the result calculated by the same
procedure as simulation 1. GNP could win by a wide
margin because GNP realized that it could defeat Pavlov
strategy by taking Defect strategy as shown in Fig.13.
If both GNP and Pavlov strategy take Defect, Pavlov
strategy takes Cooperation in-the next step. Therefore,
GNP learnd that it should take Defect next in order to
get 5 point.

3.3.3 Competition between GNPs Two GNPs
which have the same parameters compete with each
other in this simulation. Fig.14 (a) shows a typical trial
in order to study the progress of scores in detail. The
average scores mean the moving averages over 10 iter-
ations. The characteristic of the result is as follows.
While GNP1 increases its scores, GNP2 decreases them
and while GNP1 decreases its scores, GNP2 increases
them. Fig.14 (b) shows the average scores from 5500 to
8500 iterations and Fig.15 shows how often GNPs used
each node from 6000 to 7000 iterations and from 7000 to
8000 iterations, respectively. Unlike the previous simu-
lations, Fig.15 does not show the averages over many tri-
als, but one trial. When GNP1 can win by taking Defect
much more than Cooperation [Fig.15 (a)], GNP2 takes
Cooperation to some extent [Fig.15 (b)]. Then, GNP2
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Ratio of used nodes for specific intervals in competition between GNPs.

intends to take much more Defect [Fig.15(d)], so, the
scores of GNP1 decrease around 7000 iterations. There-
fore, GNP1 intends to take more Cooperation in order to
avoid continuing to take Defect each other [Fig.15 (c)].
However, GNP2 becomes to win thanks to the strategy
change of GNP1. After that, GNP1 intends to take De-
fect in turn and thus GNP2 intends to take Cooperation
in order to avoid taking Defect each other. This process
is repeated. From the viewpoint of online learning which
always aims to get higher rewards than ever, this result
is natural.

4. Conclusions

In this paper, in order to adapt to dynamic environ-
ments quickly, we proposed online learning of GNP and
applied to Prisoner’s dilemma game to confirm its learn-
ing ability. GNP can make its strategies according to Q)
values learned by @ learning. In the competition with
fixed strategy (Tit for tat and Pavlov strategy), GNP
increased its scores. In the competition between GNPs
where strategies are dynamic, both GNPs can keep up
with the changes of their strategies. '

Henceforth, in a future, we would integrate online
learning and offline learning so that the performance
will be improved much more and GNP can model the
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learning mechanisms of organisms more realistically.
(Manuscript received March 7, 2002, revised Septem-
ber 24, 2002)
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