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A variety of neuron models combine the neural inputs through their summation and sigmoidal functions.
Such structure of neural networks leads to shortcomings such as a large number of neurons in hidden layers
and huge training data required. We introduce a kind of multiplication neuron which multiplies their inputs
instead of summing to overcome the above problems. A hybrid universal learning network constructed by
the combination of multiplication units and summation units is proposed and trained for several well known
benchmark problems. Different combinations of the above two are tried. It is clarified that multiplication
is an essential computational element in many cases and the combination of the multiplication units with
summation units in different layers in the networks improved the performance of the network.
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1. Introduction

Universal Learning Network(ULN) is a general frame-
work for modeling and control of the complex systems
widely found in the real world[1]. Although it is gener-
ally used for dynamical systems that can be described
by using a set of related equations, in this paper we
concentrate mainly on static ULNs, that is, static feed-
forward networks consisting of two kinds of elements:
nodes and branches. The nodes correspond to equations
and branches to their relations. The nodes may have
continuously differentiable nonlinear functions, e.g., sig-
moidal functions or neuro-fuzzy functions.

Design of a neural network is mainly motivated by
analogy with human’s brain, which is testified to be
a good way in many fields, such as identification and
control. Researchers always look to neurobiology for
new ideas to solve problems and improve the existing
methods and algorithms. The summation unit with sig-
moidal activation function is now very generic organisms
of feed-forward neural networks. Successful applications
have been found in many fields such as pattern recogni-
tions and control systems. Generally conventional ULNs
consisting of sigmoidal units try to make all the units
uniform, that is, all the units being used have the iden-
tical node type and activation function. Though such
dealings make the networks’ training and programming

more easy, it is, to some extent, a little far away from .

the real nervous systems in the sense of diversities and
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nonlinearities.

The struggle to understand more about human brain
has never stopped. Researchers have found that multi-
plication plays an important role in single neuron com-
putation[2]. In recent years, also evidences have been
accumulated that specific neurons in the nervous sys-
tem of several animals work in a multiplicative way.
This is not an unexpected result considering the com-
plexity and sophistication of the chemical processing at
the synapses. As the nonlinearity is one of the most
useful and important specifications in neural networks,
pure sigmoidal networks must emphasize the nolinear-
ity in virtue of different activation functions and hidden
layers. In particular, the interaction of synaptic inputs
is known to be essentially nonlinear[3].

The work described in this paper addresses the use of
multiplicative-like neurons in Universal Learning Net-
works. In the next section, we will give a general review
of some kinds of networks where multiplication has been
employed to increase the capabilities of the whole neural
networks. In Section 3, we will describe hybrid Universal
Learning Network constructed by proposed multiplica-
tion units and summation units and the influence on the
learning speed. Simulations results to compare the pro-
posed methods and conventional sigmoidal networks will
be presented in Section 4. In the last section, we will
summarize and discuss our methods.

2. A General View of Multiplication Units
in Neural Networks

Summation unit which combines all the inputs by
summation is not the only nonlinearity that plays an
important role in information processing in the ner-
vous systems. Over the years, networks with multi-
plicative computations of the inputs have been devel-
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oped and applied to many applications involving func-
tion approximation, classification and control systems.
The most well-known units that comprise multiplica-
tive synapses perhaps are higher-order neurons(HONS).

Higher-order neural networks(HONNs) constructed by -

the HONSs have been developed to enhance the nonlinear
expression ability of the feed-forward multiplayer net-
works. A basic HON, with the output y and inputs
Zj, Tk, Ty, .. can be computed as:

y = flwo,+ ij:rj + Z WikT;T
J 3,k(§<k) ‘
2

5kl (§<k<1)

+

Wikl TjTRTL+ .. .),

where f(.) is the sigmoidal activation function.

Although higher-order correlations enable the net-
works to learn geometrically invariant properties more
easily, it was noticed that the number of hidden units in
the fully connected HONNSs increases exponentially with
the number of inputs. In fact, the number of parameters,
that is, the weights, increases rapidly with the number of
inputs and becomes unacceptably large for use in many
situations. Consequently, typically only second or third
order networks are mostly considered in practice[4].

Another class of higher-order networks, known as
Sigma-Pi networks also suffer from the same problem
that a combinatorial increase in the number of prod-
uct terms will lead to the increase of the number of
weights. A Sigma-Pi network contains higher-order
terms at each layer, often the layers have summation
units fed via weighted connections by outcomes of inter-
mediate multiplication units. Sigma units compute the
sum of weighted inputs h; from the lower layer,

G5 = S wighi A G, R 2)

while the pi units compute the product of weighted in-
puts h; from the lower layer:

Oéj:Hw'L'jh'i""'» .......................... (3)

The output h; of the unit j is passed through the sig-
moidal activation function:

hj = fi(ay);

M. 1. Heywood developed a framework for improved
training of Sigma-Pi networks by implementing only a
subset of the total mumber of product terms to avoid
excessive weight counts[5]. However, for many cases,
higher-order terms play a very important role and can-
not be easily ignored.

Pi-Sigma network[6] developed by Yoan Sin et. al is
said to be efficient for pattern classification and func-
tion approximation. The name came from the structure
that the output layer is a simple multiplication unit pro-
cessing all the outputs from the hidden layer by a prod-
uct. The connections from summation units to an out-
put have fixed weights of 1. The output y of the output
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layer is given by:

Yy = f (H hj); ................................
J

where h; is the output from linear summation units in

the hidden layer.

hj = Zwifhi+9j' ......................... (5)

Pi-Sigma network uses products of sums of input com-
ponents instead of sums of products as in Sigma-Pi net-
works. The main difference of Sigma-Pi and Pi-Sigma
networks lies in the combination sequence of the sum-
mation units and multiplication units, which gives rise
to the two names of networks.

Another type of multiplicative-like unit we want to
mention, product unit, was proposed by Richard Durbin
and David. E. Rumelhart[7]. Differently from higher-
order networks mentioned above, computation execut-
ing in the unit is as follows:

L — Di
hJ_II$i7
i

where p; will be treated in the same way as variable
weights. Network constructed by product unit can, in
one different way, automatically learn -the higher order
terms. )

From the above, conclusion can be given that: 1)There
are different ways to model the multiplicative-like com-
putation which do exist in the neural networks; 2)There
are many different combinations of multiplication units
and summation units, which lead to better performance
of the networks. On the basis of the above multiplica-
tion units, in this paper, a kind of multiplication units
was proposed, which, inherit the higher-order proper-
ties of all the above units while avoiding the explosion
of the number of weights with the increase of the inputs.
In fact, our neuron model has exact the same number of
weights as conventional summation neurons while reach-
ing the order until the number of the inputs. The results
show that multiplication unit can be considered as an
alternative to summation unit without significantly in-
creasing the complexity of computing and learning like
higher-order networks. Influence of the proposed unit
on the performance of the networks as well as the possi-
bility to cooperate with different units was investigated.
‘We also show that the combination of multiplication and
summation units shall not be limited to several known
formats.

3. Hybrid Universal Learning Networks

Universal Learning Network(ULN) has just been in-
troduced[1]. Although the dynamical properties make it
very successful in applications of control systems such as
robust control and system identifications[8][9][10], in this
paper, for simplicity, we mainly investigate the static
multiplicative ULN, although the result is thought to
be applicable to the dynamical ULNs. The hybrid ULN
proposed here will be constructed by summation and
multiplication units together, and different units will
have different activation functions.



3.1 Models of Summation and Multiplication
"Units in Hybrid Universal Learning Networks
Model of summation units used mostly by ULNs is the
model first proposed by MuCulloch & Pitts.

1) summation unit: With output value h; of node 7,
generic summation unit used in ULNs can be expressed
specifically as

By = fiag), ooeoneeee (7)
a] —_— Z wljhl ._’_0]7 ...................... (8)
1€JF(4)

where w;; is the weight parameter from node 4 to node j;
JF(7) is the set of suffixes of nodes which are connected
to node j; 6; is the threshold parameter of node j. Func-
tion f;(.) that governs the operation of the nodes can be
any continuously differentiable functions, typically sig-
moidal function

o) = .
filey) = L+ e-d05 9)
or hyperbolic tangent function
1 —e P52
fj(a]> = zjm’ ..................... (10)

can be employed. ¢; is the slope parameter of node 7 and
z; is the gain parameter of the function. We mean by ¢;
and z; that different nodes can have different activation
functions or different parameters in the basis function in
ULN so as to make the networks have multiformities.

2)multiplication unit: Differently from the summation
unit described above, in spite of combining all the inputs
by a linear summation, multiplication unit developed in
[11] multiplies all the inputs after subtracting an ad-
justable weight from them. The presentation of the new
model mainly based on the following points:

e The overall network will not increase the computa-
tion complexity with embedding of the multiplication
unit;

e By combining the multiplication unit with conven-

~ tional summation unit, performance of standard sig-
moidal networks can be improved so that more parsi-
monious structures can be realized.

e The combinational network should be trainable by
a standard method, such as back-propagation regime,
without a new training method needed.

Operation of the proposed multiplication unit is ex-
pressed as:

i€JF(F)

where z; is the gain parameter of node j. No nonlinear
activation function is applied to the output of multipli-
cation unit.

From the model of the proposed unit, we can see that,
it is in fact a different product unit. If the dimension
of inputs is represented by N, the increase of the num-
ber of weights with the increase of inputs by multiplica-
tion units is the same as that of summation units while

554

reaches until the order N, which is significantly less than
that of higher-order units. The reason is that weights of
higher-order terms in the representation are in fact com-
bined with products of different weights respectively. In
fact, we can form a polynomial of the inputs by the unit.
From the resulting polynomial, we can show how the
complexity of computation can be reached with the sim-
ple combination of all the inputs. With 2-dimentional
inputs, if we take the threshold 6; as 0, the output of a
multiplication unit can be described as:

hj = Zj(h1h2 — th Zwkj + wljw2j) """ (12)
A k£

that for n-dimentional inputs will be:

‘ hj:Zj(Hhi‘Zwijhi'F---
=1

k itk

n n

+ (=0 ki [T + (0" [Jw) - (13)
i ki i=1
which looks like the appearance of a higher order unit
although the number of parameters is almost the same
as that of a conventional summation unit. There is one
additional parameter, i.e., the coefficient z;, which acts
as the gain of the whole unit.

3) Structure of hybrid ULNs: In our hybrid ULNs, mul-
tiplication units can cooperate with summation units
freely with any kind of combination. Multiplication unit
can be used in any hidden layers or output layers. A spe-
cific combination of multiplication units with summation
units can be shown in Figure 1. All the multiplication
units in different layers form a subnet in the network,
and also different activation functions are used by dif-
ferent nodes and layers. Combination of summation and
multiplication units by the hybrid network come to the
forms of existing Sigma~Pi or Pi-Sigma networks.

3.2 Learning of the Proposed Multiplication
Units With a good cooperation with the summation
units, a parameter \,, of multiplication units can also
be trained by minimizing a criterion function L based
on the gradient method:

Yg s (14)

where v is the learning coefficient assigned a small pos-
itive value and g)\l is the ordered derivative defined
by Werbos which means the net change of the criterion

Am — A —

@ —ultiplication unit

O summation unit

Fig. 1.
ULN.

An example of the structure of hybrid
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function L caused by the change of A, with other vari-
ables being fixed.

The criterion function L chosen by back-propagation
method usually is the sum of errors between the net-
work outputs and their desired values. By calculating
the derivatives of L with respect to a parameter, the
gradient-based optimization can be executed as:

oL [ah'd oL
i Z _5((1)} N (15)
OAm, €I 0m) Om OAm
where § is defined to be:
) Ohy, oL .
5(5) = Z | [a—hjé(k:)} + 3—hj,] cJ e (16)
keJB(j)
Am value of m-th parameter,
JB(j) set of suffixes of nodes which are con-
nected from node j,
JD (M) set of suffixes of nodes which include
parameter A,
J set of suffixes of nodes

For multiplication units, calculation of the derivative
of % become:
7

O _
oh; "

H (hjr — Wyrg) v veomeeee e
J'#3
In general, there are two alternative methods to up-
date the weights of multiplication unit, namely off-line
and on-line. In the off-line method, sequential weight-
updating values are stored during calculating all the
updates. After all the updating values are calculated,
all the weights are changed together. On-line method
changes weights right after calculating the correspond-
ing weight-update. So the concrete procedure of the
gradient-based method is:
Initialize weights generated by small random values;
Repeat(for each epoch):
Choose one input and present it to the input layer;
Repeat (for each layer of the network)
e Propagate the signal forward through the network;
if (multiplication unit)
Calculate h; by equation (11)
else if (sigmoidal unit)
Calculate h; by equation (7) and (8)
end
eBackpropagate the error throught the network;
Especially when multiplication unit,
Calculate 6 by equation (16) and (17)
Update all the weights.
Until terminal.

3.3 Influence on the Learning Speed For a
visual evidence of the achievement by incorporating mul-
tiplication in ULNs, we investigated the error surface
by multiplication unit and summation unit, respectively.
We drew out only one multiplication unit and one sum-
mation unit from the hybrid network, respectively and
show how different the two units are by their respective
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error surface(see Fig.2). This is difficult, but possible
in simple two-dimensional problems, such as XOR prob-
lem. Consider, for example, a network with two inputs,
a hidden layer of one unit, and one output node without
bias, while fixing all the other parameters to be constant,
then the corresponding cost function L of the sigmoidal
node as a function of two weights w; and ws would be:

while that of the multiplication unit would be:

L(wy,ws) = 3 [2.(h1 — w1).(hg — ws) — Target]”
......... (19)
where f(.) is the tangent function f(h) = 1+e+¢h’ and

threshold 6 = 0.

With random initial values of weights, we can see from
Fig.2 that the error surface of the multiplication unit is
more smooth than that of summation unit. Cost func-
tion L is a 4th order function with respect to the weight
parameters which will lead to fast learning even by the
same gradient descent method.

In fact, by calculating the partial derivatives of the
output with respect to its input of sigmoidal unit and
multiplication unit respectively(that of sigmoidal unit
described by equation (10) is shown in equation (20), re-
fer to equation (17) for multiplication unit), we can see
that even when |w;i|, ¢r and 2z are set at large values,

*Error.dat* using 123 ——

4"‘:';';', ”ey,

7 17!

T iy
11/

117

22

10 -10

(multiplication unit)

Fig.2. Error surface of the summation unit with
sigmoid function and multiplication unit. The
weights w1 and ws run from -10 to 10 respectively.



 Table 1.

Simulation results for the XOR problem.

Hybrid Network Standard Network
Algorithms BP BP Quickprop
Learning v=0.5 vy=05|v=05p=175
Parameters a=0.9 a=0.9 a=0.9
Epochs 2000 2000 2000
Trials 1000 1000 1000
Successes(%) 100% 77.2% 80.2%
Failure(%) 0% 22.8% 19.8%

summation unit has difficulties to make %Z—’;| change ar-

bitrarily at any values. But from equation(17), we can
see that it is easy to change |gih’;| arbitrarily based on

the learning of wj, and z.
Ohr,  Wikdr2k P\ o
ok ZIkYRSR (IR
o = - )

2k
The model of the proposed multiplication units is sup-
posed to be particularly well suited to situations where
the modelled function or problem can be represented by
a product function.

4. Simulations and Results

To evaluate the performance of the hybrid ULNs based
on the proposed multiplication unit and conventional
summation unit, two kinds of benchmark problems were
selected as examples. All the problems have speciality
that the network used has only one output. But without
loss of generality, some of the conclusions may also be
extended to other problems.

For the reasons of fair comparison of the network, all
the results gained by hybrid ULN as well as pure sig-
moidal ULN are under the same conditions except the
node type. All the weights are initialized with uniform
distribution in [-0.2, 0.2]. Learning algorithm was. sim-
plified to highlight the influence of the different node
types and activation functions.

1)XOR Problem: :

As one of the 2-dimensional examples, XOR is one of
the traditional benchmarks which is frequently used for
historical reasons. Also because it is can be solved by a
very small network, so it becomes easier to explain the
performance of the unit.

We use a 2-2-1 network to resolve the XOR problem. -

All the activation functions except that of multiplica-
tion unit are sigmoidal function f(h) = H—% Results
shown in Table 1 compare a pure sigmoidal ULN with
hybrid ULN with one unit of the hidden layer being mul-
tiplication unit. Training set is four general patterns.
Learning parameters are named as: learning rate vy, mo-
mentum «, and the maximum growth factor u for the
quickprop learning rule. We use Scott Fahlman’s quick-
prop program translated from Common Lisp into C by
Terry Regier. Results reported are the average over 1000
runs for each configuration.

Learning curves of both a pure sigmoidal network and
the proposed hybrid network with the same configura-
tion are shown in Fig.3, where the curve by dash line
is of hybrid network, and that by solid line is of a pure
sigmoidal network. From the figure, the influence of
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7 sigmoidal netwark.
hybrid network -------

‘apochs

Fig.3. Comparison of hybrid network and sig-
moidal network with respect to learning curves for
XOR. problem.

{0,1) (1.1)

(0.1) (1.1)

(0.0)

(0.0) (1.0) (1.8)

{e) (d)

Fig. 4. Classification results of XOR problem.

multiplication unit on the learning rate can be explic-
itly presented.

Classification results for the XOR. problem are shown
in Fig.4, where Fig.4(a) shows the result by a'standard
2-2-1 sigmoidal network. By changing one of the hid-
den nodes to multiplication unit, the result becomes like
Fig.4(b). Fig.4(c) and Fig.4(d) are the results by 2-2-2-1
hybrid network where we change two or all four hidden
nodes into multiplication units.

We found that with the embedding of multiplication
units, the XOR problem can be classified by a hyperbola,
other than by straight lines.

2)Parity Problem:

An example used to test the speed of convergence is
another benchmark, the parity check problem, which is
often used for investigating the nonlinear discrimination
capability of a network. Since if the dimension(or bit)
changes, the parity will also be changed, so it can be
looked as a multi-dimension example. It is a good test
of the non-linear mapping and “memorization” capabil-
ity of the network.

XOR problem, which is equivalent to a 2-bit parity
problem, was already tested. Cases of parity prob-
lems chosen to be trained vary from 5 to 7 bits. In all
cases, experimental results of hybrid universal learning
network show better performance than standard feed-
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Table 2. Comparisons of simulation results for the
parity check problem.

Parity - N | Unit | Epochs Minimal Averge Sum
Hidden Nodes | Square Errors
pure 2000 3 0.023
5 hybrid | 1000 1 0.004
pure 6000 4 0.018
6 hybrid | 1000 i 0.012
pure 14000 4 0.021
7 hybrid | 2000 1 0.007

forward sigmoidal networks. Simulations are mainly
" centered on the minimal number of the nodes in hid-
den layer necessary to solve the above three cases by
hybrid networks and pure sigmoidal networks, respec-
‘tively. Results shown in Table 2 for standard networks
are different from the results reported in [12], where at
least N hidden units are necessary for N bit parity prob-
lem. The results show that the needed number of the
nodes for the parity problem by hybrid network and pure
sigmoidal network is far different.

Many researchers have proposed solutions for this
problem using neural networks. Rudy Setiono[13] re-
ported results using traditional sigmoidal neural net-
work that, N-bit parity problem can be solved by a feed-
forward neural network having N/2 + 1 hidden units if
N is even and by a network having (N 4 1)/2 hidden
units if V is odd. Stork and Allen[14] showed that the
problem can be solved by a network with just two hid-
den units. They made the assumptions that the net-
work consists of three layers, activation function used is
strictly monotonically increasing function and that no
direct connection between the input layer and the out-
put layer is allowed. The key to their results is the use
of an transfer function of the form:

F(h) = %(h _ M) ..... U (21)
where « is any constant greater than one.

From I.G.Sprinkhuizen-Kuyper and E.J.W.Boers ’s
paper[15] we can see that if direct connections between
the input units and the output unit are allowed, just one
hidden unit is need.

With the same learning parameters, hybrid network
shows the capability for resolving the problem with less
parameters and training time than traditional sigmoidal
neural networks. Results can be compared to the results
by Rudy Setiono. All three cases can be solved by N-
1-1 hybrid network with only one multiplication hidden
unit. So it is very clear that the number of parameters
needed by the hybrid network(N*1+1) is less than that
of pure sigmoidal networks(for example, for the 6-bit
problem, totally 6/2+1 = 4 hidden nodes are necessary,
and at least 6 * 4 + 4 = 24 parameters are necessary).

One solution for respective parity(5, 6, 7) problems
are shown in Table 3. All the weights and biases were
initialized within the range [-0.1, 0.1]. Output hjp, of the
one hidden unit for parity-6 problem can be represented
as: ‘

T

hy = 18.856(hy — 0.504)(hy — 0.497)(hg — 0.495)

C, 123 %35, 2003 &
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(parity-7 problem)

Fig.5. Learning curves for parity problems.

(hs — 0.499)(hs — 0.505)(he — 0.495)
6
=~ 18.856 | [ (hi — 0.5)

i=1

Sigmoidal function f(h) = m is used as the ac-
tivation function of the output unit in this solution.
Learning curves of networks used to resolve the three
parity problems(5, 6, 7) listed in Table.2 are shown in
Fig.5. :

Number of training datasets for the three cases is 80
for parity-7 problem, 37 for parity-6 problem and 24 for
parity-5 problem respectively. From these figures, we
can see that hybrid networks can solve the parity bench- .
mark with faster speed while using less hidden nodes.
Since the hybrid networks can find a simple solution for
the parity problem which can represent the parity rela-
tion with one product term described by equation (22),
hence it can generalize the untrained datasets well.

3) Mirror Symmetry problem:

Mirror Symmetry problem is to classify input strings
as to whether or not they are symmetric about their
centres. For the mirror symmetry problem, the output
is 1 if the input pattern is exactly symmetrical about its
center; otherwise the output is 0. A training case of a
symmetry 3 problem can be listed as:

Generally, the problem can be resolved by traditional
neural networks with two hidden units. While using



Table 3. Solutions for the parity problem(5, 6, 7).
Parity — N Wik Wah W3h Wah Wsh Weh wrh zn Who 25
5 0.503 0.497 0.502 0.491 0.501 13.516 13.481 0.058
6 0.504 0.497 0.495 0.499 0.505 0.495 18.856 —18.834 0.038 .
7 0.500 0.494 0.498 0.499 0.502 0.493 0.504 26.766 26.751 0.028
Table 4. Training case for symmetry 3 problem. (2) C.Koch and T. Poggio: “Multiplying with synapses and neu-
rons 7, In T.McKenna, J. Davis, and S.F. Zornetzer, Eds.,
z1 Z2 Z3 Y Single Neuron Computation. Boston: Academic Press, pp.315-
345 (1992)
1
0 0 0 (3) C. Koch: Biophysics of Computation. Oxford University
1 0 0 0 Press, NewYork (1999)
0 1 0 1 (4) J. Hertz, A. Krogh, and R. G. Palmer: Introduction to the
0 0 1 0 Theory of Neural Computation, Addison.Wesley (1991)
(5) M. I. Heywood: “A Framework for Improved Training of
1 1 0 0 Sigma~Pi Networks”, IEEE Trans. Neural Networks, pp.893-
1 0 1 1 903, Vol.6, No.4, July (1995)
0 1 1 0 (6) Y.Shin and J. Ghosh: “The Pi-Sigma Network: An Effi-
cient Higher-Order Neural Network for Pattern Classification
1 1 1 1 &
and Function Approximation”, Proceedings of IJCNN, 'Vol.I,
pp.13-18, Seattle, July (1991)
(7) R. Durbin and D. Rumelhart: “Product Units: A Com-
hybrid networks, solutions can be found with one hid- putationally Powerful and Biologically Plausible Extension
y ? . .
den multiplication unit. One of the solutions, that is, to Backpropagation Networks”, Neural Computation, Vol.1,
. . g . . .133-142 (1989
the output of the hidden multiplication unit can be de- (8) v H::f’asaW; ] N)Iurata J Hu and C. Jin: “Universal Lesras
scribed as follows: ing Network and Its Application to Robust Control”, IEEE
g
Trans. on System, Man, and Cybernetics-PART B, Vol.30,
hy, = 1.068(hy — 0.493)(hs + 6.978)(hs — 0.498) No.3, pp.419-430 June (2000)
40501 - - (23) (9) K. Hirasawa, J.Hu, J.Murata, and C.Jin: “A New Control
’ Method of Nonlinear Systems based on Impulse Responses of
Universal Learning Networks”, IEEE Trans. on System, Man
5. Conclusion and Cybernetics - PART B, Vol.31, pp.362-372 June (2001)
(10) K. Hirasawa, S.Kim, J.Hu, J.Murata, M.Han, and C.Jin: “Im-
Based on the biological research and practice of pi_ provement of Generalization Ability for Identifying Dynami-
R : : : cal Systems by using Universal Learning Networks ”, Neural
oneers, new type of multiplicative-like units have been Networks, Vol.14, pp.1389-1404 (2001)
already proposed and used in feed-forward neural net- (11) D.Li, K. Hirasawa, J. Hu, and J. Murata: “Universal Learning
works. In this paper, a kind of hybrid universal learn- Networks with Multiplication Neurons and its Representation
ing network constructed by the multiplication units and (a2 gb];hg’, Z;IhP?;OC'GOJ; fJgNiV, Vol-l(,jl pﬁ?\?\;'ll?‘& July 5%001)
. o . . . .E.Rumelhart, G.E. Hinton, an .J. Williams: earn-
Summatlc.)n units is pI‘OpOSBd. We.malnly 1nv.es‘E1ga‘.ced ing Internal Representations by FError Propagation”, In
the learning speed by the cooperation of multiplication D.E.Rumelhart and J.L.McClelland, Parallel Distributed Pro-
units with conventional summation units. In addition, cessing, Vol.l: Foundations. Cambrigde, MA: MIT Press
R . 1986)
Itipli n m- (
t},le n1'1mber of mult p .CatIOIl units an.d the ways of co (13) R.Setiono: “On the solution of the parity problem by a single
bination are also studied by several Slmple examples' It ) hidden layer feedforward neural network”, Neurocomputing 16
seems that multiplication units proposed can be used to pp.225-235 (1997)
improve the performance of traditional sigmoidal neural (14) D.G.Stock and J.D.Allen: “How to solve the N-bit parity
) . . problem with two hidden units”, Neural Networks 5 pp.923-
networks without changing the structure of the network. 926 (1992)
At the same time, hybrid Universal Learning Networks (15) LG.Kuyper and E.J.W.Boers: “The Error Surface of the sim-
can be trained by standard ba,ck_propaga,tion method plest XOR Network has no local Minima”, Neural Computa-
as exactly in the same way as pure sigmoidal networks. tion, Vol.8, Issue 6, pp.1301-1320 August (1996)
By combing multiplication units with summation units,
the structure of the networks used for certain problems
can be sunphﬁed significantly while at the same time,
the performance of the networks can be improved sig-
nificantly for some cases.
(Manuscript received March 26, 2002, revised October Dazi Li (Non"member) She received the B.5 and M.S de-

29, 2002)
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