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Tabu search is a meta-heuristic approach designed skillfully for finding a suboptimal solution of combinato-
rial optimization problems. In this paper the tabu search with three stages is proposed for solving large-scale
flow shop scheduling problems. In order to obtain a better suboptimal solution in a short computation time,
three different candidate lists are used to determine the incumbent solution in the respective search stages.
The candidate lists are constructed by restricting the moving of each job. Test problems with four kinds of
job data are examined. Based on analyzing the relationship between the candidate list and the suboptimal
solution for each job data, a common parameter is given to construct the candidate list during the search
process. Comparison of the computation result is made with the genetic algorithm and the basic tabu search,
from which it is shown that thé proposed tabu search outperforms two others.
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1. Introduction

In manufacturing systems effective scheduling of jobs
has become important for improving the efficiency of
operation and decreasing the production cost. Tardiness
criterion is of great importance because certain costs are
incurred for a job not completed by its due date. These
costs include: penalty clause in the contract, if there are
any; loss of good will resulting in an increased probabil-
ity of losing the customer for some or all future jobs, and
a damaged reputation which will turn other customers
away V. Flow shop problems viewed as sequence prob-
lems (called permutation flow shop problems) are con-
cerned in this paper and the objective is to minimize the
total tardiness F'|| > T;. : ‘

Tabu search(TS) was proposed by Glover @, and aims
at guiding the search beyond local optimum in the solu-
tion space of a given problem. In the real production
field for large-scale and complicated scheduling prob-
lems we have to accept a suboptimal solution, because
the computation time is limited. According to the pa-
per written by Armentano ¢ and Diaz | restricting the
neighborhood of the current solution leads to reduction
of computation time and improvement of the computa-
tional efficiency.

TS is one method of neighborhood search, and its per-
formance depends on the neighborhood structure. Dif-
ferent neighborhoods have different properties, which
may make them more or less suitable depending on the
particular problem at hand. In our earlier paper ®,
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we proposed a tabu search with restricted neighbor-
hood(TSRN) to solve flow shop problems. The knowl-
edge obtained from the simulation of an adaptive behav-
ior of fish schools has been used to define the neighbor-
hood in TSRN. When the computation time is limited,
the suitable neighborhood size has been given in TSRN
for different kinds of job data.

We also proposed a tabu search with two stages(TSTS)
® for solving the parallel machine problems P|| > T;.
In TSTS the heuristic method NEH is used to order the
jobs assigned to each machine at the first stage, and
the candidate list with small size is employed for re-
ducing the search space at this stage. In order to rise
the accuracy of the suboptimal solution obtained by the
first stage, the intensive search with large candidate list
is performed at the second stage. Because the search
route is changed by changing the structure of candidate
list, the risk of trapping in local minimum is reduced in
TSTS.

In this paper a tabu search with three stages(TS3S)
is proposed to minimize F||> 7;. Because the solu-
tion contribution changes along with the search process,
the different candidate lists are used in the three search
stages for determining the incumbent solution. At the
beginning there are many neighboring solutions better
than the current solution, the random search is used and
the candidate list with small size is employed to reduce
the computation time. As the accuracy of solution rises,
the number of better solutions included in the neighbor-
hood set is reduced, and the large candidate list is used
to improve a suboptimal solution.

The standard approach of intensification and diversifi-
cation is able to improve the accuracy of the suboptimal
solution. But the computational time is not acceptable



for large-scale problems. In TS3S new methods are used
to determine the intensification and the diversification
approach.

2. Flow Shop Problem

The permutation flow shop problem is formulated as
follows. n jobs {Jy,Js, -+, Jn} have to be processed
in the same sequence on m machines. The process-
ing time of job J; on machine M; is given by p;;(i =
1,2,---,n,5 = 1,2,---,m). These times are non neg-
ative and some of them may be zero if the job is not
processed on the machine. The due date of job J; is d;.

For this problem the following assumptions are made:"

¢ Every machine processes only one job at a time.

® Every job is processed on one machine at a time.

® Every job has to be processed at most once on ma-

chine My, My, - - -, M, (in this order).

® The operations are not preemptive.
The objective function is to minimize the sum of the
tardiness of each job. Let s;; and c;;(ci; = si5 + psj) be
the start time and the completion time of operation O;;
of job J; processed on machine M; , respectively.

The problem is to find a sequence m = {J;,, -+, J;. }
so that the following objective function reaches a mini-
mum value.

Z(mw) = Z max(Cim — dj, 0)
i=1

3. Tabu Search

TS is a meta-heuristic approach which can be designed
skillfully for finding a suboptimal solution of combinato-
rial optimization problems. Basically it consists of sev-
eral components called the move, neighborhood, initial
solution, attribute selection, tabu list, aspiration crite-
rion, and stopping rules. TS starts from an initial solu-
tion. The move is a function which transforms a solution
into another solution. The subset of moves applied to a
given solution generates a collection of solutions called
the neighborhood. The candidate list Cr () is defined
as the list of solutions evaluated in the neighborhood of
the correct solution 7. At each iteration a move leads
to the best solution in Cr(7) which may not be an im-
proved solution. To avoid cycling and more generally
to add robustness to the search, a recency-based short
term memory called a tabu list T =13, T5,...,T, gives
forbidden moves.. A tabu list consists of attributes of
the latest moves which are not allowed to be repeated
during several iterations (the tabu tenure). But a for-
bidden move can be admitted if an aspiration criterion
is satisfied.

The basic tabu search(BTS) is given as follows.

BTS ‘

Stepl: Sett+«+ 1 as an iteration number. Select the
number z from [n/2,n| randomly. Set the initial tabu

list T; =0;5=1,2,---,n. t, < 0.

Step2:  Generate the initial solution 7. 7#* «— 7 and
Thest < T

Step3: Construct the candidate list Cr(7*).

Step4:  Obtain Z(m) = min{Z(m;);m; € Cr(7*)}.
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Step5:  If Z(m) < Z(Tpest) then mpest «— 7y, tr — 0,
T, «+ z, and go to Step 7. Otherwise find the best m;
in CL(7*) subject to T; = 0. t, « t, + 1.

Step6: If Z(m) < Z(x*), then 7} «— z — 1.
Z(m) > Z(n*), then T} «— z + 1.

Step7: Renew the tabu list, 7, «— T; — 1; ¢
1,2,...,0—=11+1,...,n 7« m.

Step8: If ¢, = n, mpes: is adopted as the subopti-
mal solution and stop the computation. Otherwise
t«— 1+ 1.

Step9:  If the value of ¢/20 is an integer, update = by
an integer selected randomly from n/2 to n. Go to
Step 3. )

It

4. Components of the Proposed Tabu Search

The following components are adopted for the pro-
posed TS.

Initial solution: At the initial sequence 7%, jobs are
arranged in the non-decreasing order of due dates
called EDD (earliest due date).

Move Among many types of moves considered in the
literature for the flow shop problem, the following two
types are used prominently:

Swapping Swap jobs placed at the ath and bth po-
sitions.

Insertion Remove a job placed at the ath position
and insert it in the bth position.

In the proposed TS both types of moves are applied

at the identical probability.

Neighborhood: For a given solution m, the solu-
tions generated by swapping and inserting compose
the swapping neighborhood SN(w) and the inser-
tion neighborhood I N (), respectively. For flow shop
scheduling problems with 7 jobs, the size of SN(x)
is n(n — 1)/2, and that of IN(x) is (n — 1)2. If the
value of n is large, we have heavy computation burden
on checking the whole neighborhood to determine the
incumbent solution.

Candidate List:  The candidate listCp,(7) is applied
in order to reduce the effort for evaluating the neigh-
borhood at each iteration of the search process. How
to select the neighboring solutions from the neighbor-
hood, and how many neighboring solutions should be
selected to construct Cp(n) are difficult problems for
us. In the proposed TS3S three different C%(7)(i =
1,2, 3) are used at the respective search stages.

Tabu list:  The tabu list is defined as the set T =
11,75, ...,T,. T; is the tabu tenure of job J;. J; can
not be chosen for move until T; = 0.

Tabu tenure: The tabu tenure is set dynamically. For
every 20 iterations a new value for the tabu tenure is
generated from a uniform distribution between n/2
and n, and at each iteration this value is adjusted.
This adjustment is carried out according to the value
of the selected solution(the incumbent solution) com-
pared with the solution (the current solution)that gen-
erated the move. If the objective value of the incum-
bent solution is larger than that of the current solu-
tion, the tabu tenure of J;, whose moving leads to the
current solution translated to the incumbent solution,
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is increased by one unit. Otherwise the tabu tenure of
J; is decreased by one unit. A similar procedure was
proposed by Dell’Amico et al. ™, and used by Armen-
tano ®,

Aspiration criterion A move can be released from
the tabu condition if it has a better solution than the
best solution found by the search until that moment.

Stop rule When the suboptimal solution is not im-
proved after continuing n iterations, the search process
is stopped at each stage.

5. Design of the Tabu Search with Three
Stages

TS is one of neighborhood search algorithms. The
starting point for the neighborhood search method is the
choice of neighborhood structure; this determines which
pairs of solutions are regarded as adjacent to each other.
Consequently allowable moves are determined.

Small neighborhoods are preferable from the view-
point of the speed at which the local search proceeds. If
the neighborhood is too small, however, the final solu-
tion may be of poor quality. Neighborhood search tech-
niques should be done in such a way that a move to an
adjacent solution leads to a rapid update of the objec-
tive function value, rather than a complete recalculation
based on the whole neighborhood ®.

In this paper our purpose is to propose a tabu search
for solving large-scale flow shop problems. Instead of the
whole neighborhood the candidate list is used for deter-
mining the incumbent solution. The construction of the
candidate list is different for the respective stages.

5.1 The First Stage Process TS3S-I At the
first stage, the search process begins from the initial so-
lution which is obtained by EDD. Since at the beginning
search stage we can easily find better neighboring solu-
tions than the current solution, it is not necessary to
recalculate all of the neighboring solutions to determine
the incumbent solution. The candidate list with small
size is used at this stage. The candidate list C} () of
the. current solution 7 is constructed as follows:

Construction of C} ()

Stepl: ¢+« 1. :

Step2: Job J; is removed from the current position
to the other arbitrary position in m, or is swapped
with an arbitrary job. The probabilities of insertion
and swapping are 50%, respectively. The new solution
is represented as m¢. The move distance D;(m,7*) is
given by:

Dy(m, 7% = |Pfr — Pfr

where P-f; and Pfr are the position number of J; in
sequence 7 and 7*, respectively.
Step3: If i = n stop; otherwise i +— 4+ 1 and go to
Step 2.
By this way there are n neighboring solutions included in
C}(m). At each iteration only n solutions are computed,
and one solution 7! is selected as the incumbent solu-
tion for the next iteration. We define §;(1 = 1,2,...,n)
as the number of moves whose distance is 4 during the
search process. If at an iteration 7 translates to 7!, and
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Fig.1. Definition of neighboring jobs (J; = J7 and
I =5).

Dy(w,7) is the move distance of J;, then 0Dy (rmt)
5D[(7T,’Irl) + 1

5.2 The Second Stage Process TS3S-I1 In

- TS the best- solution included in candidate list is se-
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lected as the incumbent solution. The EDD is used as
the initial solution at the first stage. The solution gen-
erated with large D;(m, ") is difficult to be selected as
an incumbent solution, when the due dates of job data
distribute in the wide time range. Since we focused on
the random selection in the first stage, the distribution
of §; relates with the characteristic of the job data.
How can this information be used to predict which
moves are likely to lead to improvements in the objec-
tive function value? The answer is that if we can restrict
the move distance of job J; in a suitable range,the eval-
uation of unnecessary non-improving moves is avoided
and consequently search efficiency is improved. There-
fore our purpose is to determine the suitable move range.
The parameter K is introduced to restrict the moving of
job in the sequence, and the value of K is determined as
the minimal value obtained from the following equation.

K n
P> 6 Z i o (3)
i=1 =1 , .

We will give the value of p by analyzing the computation
result later.

In our earlier paper ®, the set C(mr, J;, I) is used to re-
strict the moving of each job when generating the neigh-
boring solutions of the current solution. The definition
of C(m, J;,I) is given as follows:

Uik:{

Clm, Ji, I) ={J | k # i,k € {k1, ko, - kr}
i, (1=1,2,---,1) are the
least I values of oy}

si1— ¢k for cp <si
sp1 — ¢ for sy >cp
k=1,2,--,n, k#i

When o;; = 031 (j # k), select one job from jobs J; and
Ji, randomly and include it in set C(7, J;, I). Therefore
the set C(mr, J;, I) consists of the I nearest jobs from job
J; in sequence 7. Fig. 1 shows an example of the Gantt
chart for (n,m) = (8,3) and I = 5. For J; = J; we have
the set C(Tl', J7, 5) = {Jl, J4, JQ, J5, Jg}

Depending on C(w, J;,I) the candidate list C% (n) is



constructed as follows:

Construction of C% ()

Stepl: i+ 1.

Step2: Remove J; from the current position and
place it at the position where an arbitrary job included
in set C(w, J;,I) is placed, or swap J; with an arbi-
trary job included in set C(m, J;, I). The probabilities
of insertion and swapping are 50%, respectively.

Step3: If ¢ = n stop; otherwise ¢ + 7 4+ 1 and go to
Step 2.

Because the I nearest jobs are found forward and back-
ward from J; in sequence 7, when [ = 2 X K, the move
whose distance is shorter than K can be obtained by
Step 2.

The candidate list C%(n) is composed with n neigh-
boring solutions. Because the moving of each job is re-
stricted by the set C(m,J;, I), the search space in this
stage is reduced.

In TS an unimproved solution can be selected as the
incumbent solution in order to reduce the risk to trap in
the local minimum. At the first stage the size of candi-
date list is small and the solutions included in candidate
list are generated randomly. "Therefore the solution in
which a job is moved to an unreasonable position may
be accepted at the first stage as an incumbent solution.
At the second stage the jobs can be moved to only the I
nearest positions. If a job is moved out of this range at
the first stage, it is difficult to be put back at the second
stage. Based on the initial solution 7} and the best so-
lution 7f,,, obtained by the first stage, we generate the
initial solution 72 for the second stage by the following
algorithm.

Algorithm A
Stepl: 72« ml
Step2: Calculate the value of Dy(w},72), (i

1,2,...,n) from Eq. (2). D;(r},«2) is the difference
of the positions of J; in solutions 7} and 72.

M}

Step3: D; « max{D;(nl,72);i = 1,2,...

D; < K, then stop.

Step4:  Move job J; in the solution 72 from its current
position to the position where J; is placed in solution
nl. Save the new solution as 72, and go to Step 2.

In TS the diversification strategy is used to drive the
search into a new region of the solution space which has
not been examined yet. The new feasible initial solution
is needed to restart the search process. Two prominent
methods are used to generate the new initial solution;
multi-start approach and systematic approach . In the
multi-start approach the solution is generated randomly.
In this case it represents a schedule which has been ex-
amined earlier, and the process is repeated. The system-
atic approach is to generate the solution based on how
often each job has occurred at each position so far. This
frequency is stored in a matrix which has to be updated
at each iteration.

In TS3S-II a new initial solution is generated by al-
gorithm A based on the solutions 7} and 7i,.,. The
candidate list in TS3S-1I is different from that used in
TS3S-I, and then the search is not repeated. Because
only two solutions are recorded during the search pro-

If
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Fig.2. The flowchart of T'S3S.

cess, the computation time is reduced. :

5.3 The Third Stage Process TS3S-III In
this stage the purpose is.to improve the best solution
obtained by two former stages. In the case of using the
small neighborhood, the final solution may be of poor
quality. Therefore the number of solution included in
the candidate list C3 () is increased. Because the value
of I relates with the characteristic of job data, we also
restrict the move of jobs when the candidate list C3 ()
is constructed. The construction is as follows.

Construction of C% ()

Stepl: i« 1. _

Step2: Remove J; from the current position and
place it at the position where every job included in
set C(m, Ji,I) is placed, to generate set {7r'l;] =
1,2,...,I}. 7" is the I-th solution obtained by in-
sertion of job J;. Swap J; with every job included in
set C(m,J;, I) to generate set {m'si;1 = 1,2,...,1}.
7%t is the I-th solution obtained by swapping of job
J;.

Step3: If i = n stop; otherwise 7 + i -+ 1 and return
to Step 2.

Then we have C3(n) = {r'n Uxrisi i = 1,2,...,n;

[=1,2,...,I}. In this stage an intensive search is per-

formed in the reduced solution space, and the number

of solutions included in candidate list increases with I.
54 Whole Algorithm of TS3S Fig. 2 shows

the flowchart of the whole algorithm for TS3S. In the

TS3S the same procedure as BTS is used repeatedly at

the three search stages, but candidate lists C%(w);i =

1,2,3 are used at the respective stages. n);y = 1,2,3

are the initial solutions for the respective stages. The so-

lution 7} generated by EDD is used as the initial solution
of TS3S-I. The initial solution 72 of TS3S-IT is generated
by algorithm A. The initial solution 73 of TS3S-III is the
better solution between 7, ., and 7Z,,. The suboptimal
solution is obtained as the final solution 73, of the third

IEEJ Trans. EIS, Vol.123, No.3, 2003
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6. Computational Experiment

An experiment was carried out to examine the per-
formance of TS3S. The algorithm is coded in C and the
experiments are performed on Compaq ProLiant ML330.
" CPU is Pentium 866MHZ. |

6.1 Test Problem We generated randomly a
number of instances with various due dates and process-
ing times. The processing times of operations p;; are
selected from discrete uniform distribution [1,100]. The
due dates of job data are uniformly distributed between
MLx(1—7—%)and ML x (1—7+£), where ML is

2
a lower bound of the makespan, which is given by

i—1
ML = max{ max {Zp” —l—manpd +
=1
mm Z pat, maxzp”} ........ (6)

I=j+1

7 and R are the tardiness factor and the range of due
date | respectively. Fig. 3 shows the following four
cases of distribution of due date with different 7 and R.

Case 1: low tardiness factor (7 = 0.2) and small due
date range (R = 0.6)

Case 2: low tardiness factor (7 = 0.2) and wide due
date range (R = 1.2)

Case 38: high tardiness factor (r =
date range (R = 0.6)

Case 4: high tardiness factor (7
date range (R = 1.2)

The release date of job J; is uniformly distributed in the

pr

6.2 Computatlon Results by TS3S Ten test
instances w;(i = 1,2,...,10) with m = 3, n =200
are generated for each case. Then 40 test instances are
treated by TS3S, where the value p is changed from 65%
to 95%. For each instance w; ten different runs are per-
formed with various p by changing random numbers.
At each run the objective values Z(nj,.,), Z(n2.,;), and
Z(n},,) are recorded.

For each case the three values of instance w; ob-
tained by the /-th run are denoted as Z(mj,.,)},(v =
1,2,3;4 1,2,...,10;1 1,2,...,10; and p
65%,70%, ...,95%). Then their averages for ten runs

0.4) and small due

0.4) and wide due

range [0,d; —
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Fig.4. Variation of Ry with p for problems in Case 4.

are given by

10

_ 1 .

Z(m) )i = o Z Z(m )y e
=1

The average relative improvement obtained by TS3S-11

with respect to TS3S-I, and that obtained by TS3S-111

with respect to TS-II are given respectively by

1 Z(mt. 0 )ip — Z(T2. )i
Rot — — best/up best/tP ... 8
2 10 ; Z ﬂ-liest)ip ( )
Ry = — i Z(miest)io = Z(Toest)io ... (9)
10 i=1 Z(’/Tgest)ip

The total improvement rate is given by '

10 5,
_ 1 Z(Wbes )1 — (Wbest)
Rr =1 ; Z(

ﬂ-best)w

The values Ry1, R3z and Ry depend on p, but its de-
pendency is omitted in their expression for Simplicity of
notation.

Tables 1 and 2 show the values of Rz and R32 for var-
ious p. From the two tables the approaches of TS3S-11
and TS3S-III are not effective for the instances with the
low tardiness factor(Cases 1 and 2). For Case 3 a little
improvement(Ry;) is obtained by TS3S-II as shown in
Table 1. For these three cases the value of p does not af-
fect the values of Ro; and R35. On the other hand, Case
4 corresponds to the problems with high tardiness and
wide due date range. Consequently it is considered that
Case 4 treats difficult problems. For such case the sig-
nificant improvements of Ry and Rgo are obtained, and
the approaches of TS3S-II and TS3S-I11 are effective.

The relationship between R; and p for Case 4 is shown
in Fig. 4. When p < 80% the value of Ry is improved as
p increases, but when p > 80% this trend is saturated.
Table 3 shows the variation of the average CPU time
taken by T'S3S with p. Because the number of solutions
included in the candidate list is increased with p, the
cost of CPU time also increases with p. Based on Fig.
4 and Table 3, and also because p does not affect the



Table 1.

0 65%
Case 1 | 0.006
Case 2 | 0.002
Case 3 | 0.012
Case 4 | 0.086

The average Improvement Ra;.

70% 75% 80% 85%  90%
0.005 0.006 0.004 0.006 0.006
0.002 0.003 0.002 0.002 0.002
0.011 0.011 0.012 0.011 0.011
0.084 0.114 0.085 0.135 0.117

95%
0.005
0.002
0.011
0.100

Table 2.

o 65%
Case 1 | 0.002
Case 2 { 0.002
Case 3 | 0.003
Case 4 | 0.072

The average Improvement Ras.

0% 5%
0.002 0.002
0.004 0.003
0.004 0.003
0.087 0.071

95%
0.003
0.004
0.004
0.100

90%
0.003
0.003
0.004
0.083

85%
0.003
0.003
0.003
0.072

80%
0.002
0.003
0.004
0.120

Table 3.

P 65%
Case 1 | 227
Case 2 | 139
Case 3 | 158
Case 4 | 180

CPU time for various p.

0% 75% 85% 90%
260 280 383 399
150 167 199 223
187 239 315 381
200 221 306 375

95%
467
264
432
485

80%
333
182
249
278

results in Cases 1~3, we recommend p = 80% as the
suitable value of an important parameter in TS3S.

Fig. 5 shows the convergence curve for one run of an
instance in Case 4 with p = 80%. In the first stage and
the second stage, the considerable convergence speed is
obtained though the size of the candidate list is small.

After continuing n(=200) iterations with no improve-
ment in the objective value in TS3S-I, the search of
TS3S-I attains a local optimum. At this time the di-
versification is performed, which is to restart the search
from a new initial solution.” By using the new candidate
list and the new initial solution in TS3S-II, the search
escapes from the local optimum and converges on a so-
lution better than the suboptimal solution obtained by
TS3S-I. The suboptimal solution obtained by TS3S-1I is
improved by intensive search in TS3S-III.

6.3 Comparison with Other Algorithms BTS
proposed by Armentano® and the genetic algorithm
with search space reductions(RCGA) proposed by Zhao
et al. *» are employed to treat the instances in the four
cases. The same procedure as presented in Section 3 is
used by BTS. Instead of the candidate list Cp(w) the
insertion neighborhood IN(7) is employed to determine
the incumbent solution for the next iteration in BTS. It
is shown in Zhaos’ paper ¥ that RCGA outperforms the
standard genetic algorithm for solving large-scale flow
shop problems. Then we adopt RCGA. as an example of
genetic algorithms. The population size of RCGA is set
to 500 and the algorithm stops after 5000 generations.
Crossover rate P, is 1.0 and mutation rate P, is 0.05.

We treat ten instances for each case. Each instance
is treated ten times by BTS and RCGA with changing
random numbers. Table 4 shows the average of the ob-
jective value obtained by each method for each case. For
the instances in Cases 1 and 2, the difference of subopti-
mal solution among BTS, RCGA and TS3S is small. For
such cases not so bad solutions can be also obtained by
heuristic methods such as EDD or ERT (earliest release
time). For Case 3 TS3S outperforms BTS and RCGA a
little, and for Case 4 significant improvement is obtained
by TS3S as compared with BTS and RCGA. For Case
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Table 4. The average objective values obtained by
various methods.

EDD
3582.5
961.8
41744.3
33139.5

ERT
3494.2
866.8
41565.3
87549.5

BTS
3402.4
838.5
27317.2
4739.3

RCGA
3398.4
838
27472.5
4753.9

TS3S
3399.3
837.3
26982.4
4370.1

Case 1
Case 2
Case 3
Case 4
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Fig.5. Convergence curve of T'S3S with p = 80%.

Table 5.
TS3S.

Comparison among BTS, RCGA and

CPU time (sec.)
BTS RCGA TS3S

Improvement rate

Rprs/rcca Rers/rsss:

Case 1 | 440 358 333 0.002 0.001
Case 2 | 434 358 182 0 0.001
Case 3 | 778 358 249 -0.006 0.01
Case 4 | 1065 358 278 -0.025 0.094

3 and Case 4, the results obtained by heuristic methods
are inferior.

Let Z2 and ZF(i = 1,2,...,10) be the average ob-
jective values obtained by BTS and RCGA for each in-
stance, respectively. The average improvement rate of
RCGA for BTS and that of T'S3S with p = 80% for BTS
are given, respectively, by

1 ZG
Rprs/rcca = WX Tz (11)
ZE — Z(m . Dison ‘
Rers/rsss = 15 Z éBbest) 80% ... (12)
i=1 %

Table 5 shows the CPU times taken by three algorithms
and the values of Rprs/rcga and Rprg/rsas for four
cases of test problems. Since the search space is reduced
in TS3S, the computation time taken by TS3S is shorter
than that taken by BTS and RCGA.

From the CPU time taken by BTS for computing the
problems for Case 4, we also consider the instances in
Case 4 are more difficult problems, because more CPU
time is needed.

It is observed from Table 5 that RCGA does not out-
perform BTS for solving large-scale flow shop schedul-
ing problems. When p = 80%, the solutions obtained
by T'S3S are better than those obtained by RCGA, and
less CPU time is taken by TS3S.
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Table 6. The statistical value of the differences in the suboptimal objective value and CPU time.
Datal Data2 Data3 Data4d Datab Data6 Data7?7 Data8 Data9 Datal0
Zprs/rssr | 249  13.0 95 8.8 121 3.7 35.7 4.0 69.0  43.0
Zrogajrssr | 132 112 177 85 128 2.6 6.9 109 1031 17.3
Ters/rssr | 31.3  23.8 258 286 395 230 784 262 356  19.3
Troga/resr | 6.7 8.3 9.7 4.9 3.1 18.3 277 733 193 29.7

Armentano also proposed a neighborhood restriction
strategy in TS, by which 40% computation time is re-
duced for BTS, but the suboptimal solution is not better
than that obtained by BTS ®. On the other hand, Ta-
ble 5 shows that, as compared with BTS, TS3S attains
25 ~ 68% reduction in CPU time and almost same ac-
curacy for Case 1 to 3. In addition for Case 4 TS3S
outperforms BTS significantly from the viewpoints of
CPU time and accuracy.

For further investigation, each of ten instances in Case
4, called Data 1 to Data 10, is treated 100 times by BTS,
RCGA and TS3S with changing random numbers, and
the result of statistics for each instance is obtained. The
level of significance « is set to 0.05. In order to ap-
ply the 95% statistical test to these data, the following
statistical values are defined for the differences in the
suboptimal objective value:

ZB - Z(Trgest)

Zprs/Tsss = > L RTRTEITEr (13)
EE
99 99
ZG -7 71’3
ZReGA/TS3S = - ( bezst) ............. (14)
5%, 5%
99 99

Where Zp, Zg and Z(nd,,,) are, respectively, the aver-
age objective values obtained by BTS, RCGA and TS3S
for each data. The values 5%, S% and S% are the sam-
pling variances of Zp, Zg and Z(wj.,,), respectively.
In the same way, the statistical values Tprg/rg3s and
Troaa/rsss are defined for the differences in the CPU
time.

Table 6 shows the result of the 95% statistical testing
for ten data. All the values in this table are larger than
1.96, which means that significant differences in both the
suboptimal objective value and the CPU time exist be-
tween TS3S and BTS(or RCGA) under the assumption
of normal distribution because of large sampling size.
This shows that T'S3S outperforms other two methods.

7.

Conclusion

In this paper a three-stage tabu search has been pro-
posed for solving large-scale flow shop scheduling prob-
lems. Because in TS3S different candidate lists are used
during the search process, the risk of trapping into lo-
cal minimum is reduced. Consequently the quality of
suboptimal solution is improved. Small size candidate
lists are employed by TS3S-I and TS3S-II, and then the
computation time is saved.

The recommendation of an important parameter is
given as p = 80% after analyzing the computation re-
sult. Based on p and the move distance recorded in
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TS3S-1, the parameter I can be determined, from which

the search space is reduced in TS3S-II and TS3S-III.
Based on the computational experiences for four cases

of test problems, TS3S is proved to be effective, espe-

cially for the difficult problems(Case 4), as compared

with the genetic algorithm and the basic tabu search.
(Manuscript received March 22, 2002, revised October
9, 2002)
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