Quantitative Analysis and Influence of CO$_2$ Absorbed in TMAH Solution for Silicon Etching

Yupeng Jing*
Kazusuke Maenaka*
Hiroshi Nishiooka*
Sunao Ioku*
Takayuki Fujita*
Yoichiro Takayama*

Student-member
Member
Non-member
Student-member
Member
Non-member

This paper presents the quantitative analysis and influence of CO$_2$ dissolved in TMAH for silicon etching. The etching rate on the (100) plane increases at first and then decreases with the increase of CO$_2$ concentration. The etching rate on the (110) plane decreases monotonously with the increase of CO$_2$ concentration. Although the etching rate on the (110) plane is higher than that on the (100) plane at ordinary conditions, this relationship is reversed at a certain quantity of CO$_2$ dissolution. The etch-stop appears at higher concentration of CO$_2$ dissolution. It was confirmed that changes of the silicon etching characteristics are caused by concentration of carbonate anions. The CO$_2$ dissolution has influence on the (100) plane and no influence on the (110) plane.

Key words: MEMS, TMAH, Anisotropic Etching, Carbon Dioxide

1. Introduction

Anisotropic silicon wet etching is a key technology for fabrication of 3-D Micro Electro Mechanical Systems (MEMS). The commonly used etchants are TMAH (tetramethyl ammonium hydroxide), EDP (ethylenediamine, pyrocatechol, and water) and KOH. In recent years, the most widely used etchant is TMAH due to good compatibility with the integrated circuit process and good selectivity to the passivation layers.

For TMAH, an issue of silicon etching stability for temperature and other environmental conditions remains now. As the size of MEMS devices is reduced rapidly, the improvement of the stability of TMAH on silicon etching rates has attracted a lot of attentions. It is known that some trace additions (e.g. oxidizers, metal anions, surfactants) can be used to improve and control the TMAH etching characteristics of silicon (1)^–(3). For the better stability of TMAH, we quantitatively investigated influences of CO$_2$ on orientation dependence of silicon etching, because CO$_2$ is one of the significant substances which changes etching characteristics of TMAH.

In this paper, the experimental conditions and CO$_2$ measurements are introduced in chapter 2. The experimental results are given in chapter 3. Chapter 4 provides some discussions on the changes of silicon etching rates. Conclusions of this paper are given in chapter 5.

2. Experiments

The purpose of the experiments are to clarify the influences of CO$_2$ on TMAH anisotropic etching of silicon. This experiments were achieved by two steps. The first step is to bubble the TMAH solution with CO$_2$ for various bubbling times (various content of CO$_2$) and to measure the concentrations of dissolved CO$_2$ in the TMAH quantitatively. The second step is to etch the specimens using the TMAH with various concentrations of CO$_2$ and to measure the etched depths, lateral underetching and surface morphologies.

2.1 Etchant and Silicon Samples

The TMAH we used is produced by Toyo Gosei Kogyo Co., Ltd. in Japan. The concentration and pH value are 25 wt.% and 13.6, respectively. In the experiments, p-type silicon wafers with (100) and (110) surface orientations and resistivity of 0.1-100 Ωcm were used. Firstly the wafers were covered by a thermal oxide with thickness of 0.3 μm, and then the oxide layer was patterned for an etching mask. In order to obtain detailed data on the orientation dependences of etching rates, a wagon wheel pattern shown in Fig.1 was employed. The pattern consists of radial segments that are rectangular with the size of 10 μm × 8 mm. The segments are arranged in a fan shape with an angle of 10 deg. The size of the specimen is 10 mm × 10 mm square.
2.2 Bubbling Process

The reaction between TMAH and CO₂ is an exothermic neutralization and the speed of this reaction is very fast⁴. The dissolution of CO₂ was achieved by bubbling the TMAH solution with CO₂ using a fine pipe (inner diameter of 1 mm). The amounts of CO₂ dissolution were controlled by bubbling times. For obtaining the quantitative influence of CO₂ dissolution on silicon etching characteristics, 8 kinds of solutions with different CO₂ concentrations were used in every experimental step. In the experiments, after pouring 30 ml fresh TMAH solution into eight 80 ml test tubes, the CO₂ was introduced to the the TMAH solution at the bottom of test tubes. As the rising of CO₂ bubbles in the solution, the CO₂ reacts with and dissolves to TMAH solution. The flow rate of CO₂ was maintained at 1 ml/s. As the dissolution speed can be accelerated by heat of this neutralization, the test tubes were maintained at room temperature using a water bath.

At the beginning of the bubbling process, the size of CO₂ bubbles became smaller rapidly with the rising and the bubbles can not reach the top of the surface of TMAH solution. After several minutes, the bubbles appear at upper part of TMAH and its size becomes larger. Then some CO₂ is released from TMAH solution. This phenomenon indicates that the speed of reaction and dissolution begins to decelerate. After the CO₂ bubbling, CO₂ flow is stopped and switched to N₂ flow to blow the remained CO₂ away from test tubes.

2.3 Examination of CO₂ Concentrations

When CO₂ dissolves in TMAH, part of CO₂ is ionized to carbonate anions and bicarbonate anions. The remainder is only mixed into TMAH without ionization. The former contributes to the neutralization of TMAH and latter does not contribute it. The amounts of CO₂ dissolution were measured by two different methods: a weight method and a chemical precipitation method.

The weight method measures the difference of weights of TMAH solution before and after CO₂ bubbling. Thus the total amount of CO₂ can be measured regardless of ionization of CO₂.

On the other hand, the chemical precipitation method can estimate the amount of ionized CO₂, which contributes to neutralization of TMAH. When the ions of CO₂(CO₃²⁻ and HCO₃⁻ anions) combine with some sufficient cations which can form insoluble precipitates, the anions are consumed by the formation of insoluble precipitates. Then the amount of ionized CO₂ can be calculated from the weight of the precipitation. In our experiments, BaCl₂ solution with concentration of 1 mol/ml was employed to react with CO₂ dissolved in the TMAH solution. When BaCl₂ solution is added into the TMAH solution, the Ba²⁺ cations combine to CO₃²⁻ anions to produce insoluble precipitates of BaCO₃. The amount of ionized CO₂ can be estimated from the weight of the precipitates extracted by filtration and drying process from the solution. Then the weights of dried precipitates of BaCO₃ were measured with a high precision balance and the weights of ionized CO₂ were calculated form the ratio of molecular weight.

Fig. 2 shows the obtained relationship between CO₂ concentration and bubbling time from both the weight method and chemical precipitation method. The difference of the results between the two methods indicates the amount of non-ionized CO₂ in TMAH. In the following experiments, we will use CO₂ concentration from the chemical precipitation method.

There is a more simple estimation method for CO₂ concentration of TMAH⁵. It is a simple pH value measurement.

This method depends on the neutralization and the pH value of alkali solution is reduced by the neutralizations. Fig. 3 shows the relation between the pH value and the concentration of CO₂ in TMAH. It shows an almost straight line. By measuring the pH value of TMAH, the concentration of CO₂ can be obtained from Fig. 3. Although the measurement accuracy is not high and it is not used in our analysis, it can be used for in-situ estimation of CO₂ concentration.

3. Experimental Results

3.1 Activation Energy of CO₂ Dissolution

The neutralization of CO₂ dissolution is a usual chemical reaction and its speed is a function of temperature. Fig. 4 shows the relation between reaction temperature and weight of dissolved (ionized) CO₂ in unit time and volume of TMAH. The weight of CO₂ dissolution was obtained by using the chemical precipitate method. In this measurement, the bubbling time is 3 min. and the flow rate is 1 ml/s. The temperature of TMAH was varied from -5 to 10 deg. C. From Fig. 4, we calculate that the activation energy of neutralization is about 0.14 eV. It is a large value for the gaseous reactants.

3.2 Influence of CO₂ Dissolution on Etching Rates

The silicon samples with the patterned SiO₂ film were immersed in the bubbled TMAH solutions to achieve anisotropic
the CO₂ concentration exceeds 40 g/L, the sample is not etched anymore and TMAH completely etch stops.

When the CO₂ concentration is about 18 g/L, the etching rates of the (100) plane and (110) plane are equal and their values are near 0.9 mm/min. When CO₂ dissolution exceeds this concentration, the etching rate on the (100) plane is higher than that on the (110) plane until to the etch-stop.

On the (100) plane, the lateral underetching values on the radial segments (on all the directions) were measured using the measuring microscope. The results are also shown in Fig. 6. The lateral underetching values on the (100) plane without CO₂ dissolution and with 23 g/L of CO₂ dissolution are shown. The lateral underetching rate of the <014> direction quickly decreases and the lateral underetching rate of the <001> direction decreases slowly with the increase of CO₂.

In Fig. 7, the lateral underetching values of the (110) plane are shown. The lateral underetching rates degrade quickly with the increase of CO₂ dissolution, at approximately equal ratio in all the etching. The anisotropic etching was carried out at 85 deg C. for 30 minutes. After etching, the etched depths of the samples were measured using a measuring microscope. The etching rates of the (100) plane and the (110) plane were repeatedly obtained from three identical experiments. The mean values of etching rate are shown in Fig. 5 with maximum and minimum values as the error bars.

As shown in Fig. 5, on the (100) plane the etching rate is 0.8 mm/min when CO₂ concentration is 0. This result confirms that the etching conditions in our experiments coincide with that cited in other papers. Until the CO₂ concentration is 23 g/L, the etching rate of the (100) plane increases and reaches the maximum value of 0.9 mm/min. When the CO₂ concentration exceeds 23 g/L, the etching rate begins to decrease with the increase of CO₂ concentration. The CO₂ concentration of complete etch-stop is about 42 g/L.

On the (110) plane, the etching rate decreases monotonously with the increase of CO₂ concentration. Initially the etching rate is 1.7 mm/min that is the maximum value for the (110) plane. When
3.3 Roughness of Etched Surface

The etched surface was observed by SEM and is shown in figure below. Fig. 8 shows the etched surface of the (100) plane in low CO₂ dissolution. The (111) side plane and the corner are clearly observed in Fig. 8. At the same time, the hillocks appear on the (100) plane. With the increase of CO₂ concentration, the number of hillocks increases. This phenomenon indicates that the products and the byproducts (e.g. hydrogen) have some influences on the surface.

When CO₂ concentration is high, the influence on (100) surface is different depending on the position as shown in Fig. 9. The etched bottom plane is covered by the hillocks completely. In the corner part of the pattern, unetched silicon is remained. This phenomenon is caused by gaseous products or the unreacted CO₂. The gaseous products or non-ionized CO₂ may create a temporary mask at the corner of pattern.

In contrast to the (100) plane, the etched surfaces of the (110) plane have no changes for eight different concentrations of CO₂ dissolution. All of the etched surfaces have a typical texture surface and show same roughness. No hillocks were formed on the surface of (110) plane while etching process (Fig. 10). It shows that the dissolution of CO₂ has no influence on the roughness of the (110) etched surface.

4. Discussions

The significant phenomenon in our experimental results is the change in the ratio of etching rates on (100) and (110) planes. Initially, the etching rate of the (100) plane is much higher than that of the (110) plane. As CO₂ dissolution increases, the etching rates of (100) and (110) become nearly equal and then both of them tend to zero.

The similar phenomenon of the change in etching rates can also be found in the case of K₂CO₃ or surfactant addition. However, we used only CO₂ as addition and the etching mechanism is not directly similar to the case of K₂CO₃ or surfactant addition. In the following, we try to investigate this phenomenon further.

By dissolution of CO₂ in TMAH, following reaction is supposed to be dominant.

\[x[(\text{CH}_3)_2\text{N}]\text{OH}+y\text{H}_2\text{O}+z\text{CO}_2 \rightarrow \]
\[z[(\text{CH}_3)_2\text{CO}]^+(x-2z)[(\text{CH}_3)_2\text{N}]\text{OH}+(y+z)\text{H}_2\text{O} \]

where non-ionized CO₂ is not represented in the equation. In the solution, [(CH₃)₂N]CO₂ and [(CH₃)₂N]OH are ionized and generate CO₂⁻ and OH⁻ ions. For accurate estimation, other products such as [(CH₃)₂N]HCO₂ and H₂CO₂ must be taken into account, however, we omit these products for simple discussions.

In our experiments, 25 wt.% TMAH is used. Thus x=2.75 mol/l and y=41.7 mol/l. The condition that x=2z (all TMAH is decomposed and etching does not proceed any more) arises at z=1.18 which corresponds to the CO₂ dissolution of 60.5 g/l. In Fig. 5, the etching rates of (100) and (110) planes become zero when CO₂ concentration is around 45 g/l. Considering the electrolytic dissociation factor of TMAH, the etching stop at 45 g/l CO₂ concentration may be caused by lack of OH⁻ ions.

As the CO₂ concentration increases, the quantity of TMAH is reduced and H₂O slightly increases by the factor of (y+z). Thus the concentration of the TMAH is reduced. Generally, the decreasing concentration of anisotropic etchant causes the decrease of etching rate, because of the increase of H₂O which acts an important role to the etching mechanism together with OH⁻ ions. The solid lines in Fig. 11 are the rewritten form of the etching rates of (100) and (110) planes with respect to the TMAH concentration calculated from CO₂ concentration. In the figure, etching rates of TMAH without CO₂ dissolution, e.g. by diluting water, are also indicated by dashed lines.

For the (100) plane, when TMAH concentration is higher than 15 wt.%, it seems that the change of etching rate of TMAH with CO₂ dissolution (solid line) completely follows the etching rate of TMAH without CO₂ dissolution (dashed line) and these is no influence of CO₂.

When the TMAH concentration became less than 15 wt.%, the
etching rate of TMAH with CO₂ suddenly decreases and separates from the etching rate of TMAH without CO₂. The critical value of CO₂, 24 g/L, corresponds to the point that the non-ionized CO₂ begins to mix to the solution (see difference between two curves in Fig. 2). So the non-ionized CO₂ may act as an etching mask for the (100) plane.

Contrary to the situation for the (100) plane, the (110) plane of etching rate of TMAH with CO₂ dissolution is quite different from one without CO₂. Thus the reason of decrease of etching rate must be found from other compositions, such as CO₃²⁻. In the case of K₂CO₃ addition, also CO₃²⁻ ions appear in the solution. According to ref. (7), however, only 0.5 g/L K₂CO₃ addition causes large change in the etching rates. The quantity of 0.5 g/L K₂CO₃ corresponds to 0.0036 mol/L which is quite small contrast to our experiments (we dissolved CO₂ at an order of 10 g/L corresponding to 0.2 mol/L). Thus the influence of CO₃²⁻ ion is different from K⁺ ions. We now assumes that the CO₃²⁻ ions effectively mask silicon (100) surface for the etching as same as the surfactant addition. The clarification of detailed mechanism is the problem to be solved in the next step.

5. Conclusions

The detailed effect of CO₂ in TMAH for silicon etching was examined. The etching rate on the (110) plane decreases with the increase of CO₂ dissolution. The etching rate on the (100) plane increases at first and then decreases with the increase of CO₂ dissolution. The both are equal for CO₂ concentration of 18 g/L. About the morphology of etched surface, the CO₂ dissolution has influence on the (100) plane and no influence on the (110) plane. It is confirmed the carbonate anions have strong influence on both of etching rates of (100) and (110) planes.

(Manuscript received February 12, 2002, revised November 11, 2002)

References

Takayuki Fujita (Member) received the B.E., M.E. and Ph.D. degrees from Himeji Institute of Technology, Japan, in 1995, 1997 and 2000, respectively. Since 2001, he has been with the Graduate School of Engineering, Himeji Institute of Technology, where he is presently a research associate. His research topics are silicon MEMS and RF devices.

Yoichiro Takayama (Non-member) received the B.E., M.E., and Dr. Eng. degrees from Osaka University in 1965, 1967 and 1973, respectively. From 1967 to 2000, he worked at NEC corporation, where he was engaged in the research and development of microwave semiconductor devices and their circuit technologies. In 2000, he joined Himeji Institute of Technology as a professor and is currently engaged in the research and development of microwave devices, their circuit applications and MEMS technology. He received the 1983 Microwave Prize granted by IEEE MTT Society.