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One of the most important issues for power suppliers in the deregulated electric industry is how to bid into
the electricity auction market to satisfy their profit-maximizing goals. Based on the Q-Learning algorithm,
this paper presents a novel supplier bidding strategy to maximize supplier’s profit in the long run. In this
approach, the supplier bidding strategy is viewed as one kind of stochastic optimal control problem and each
supplier can learn from experience. A competitive day-ahead electricity auction market with hourly bids is
assumed here, where no supplier possesses the market power and all suppliers winning the market are paid
based on: their own bid prices. The dynamics and the incomplete information of the market are considered.
The' impact of suppliers’ strategic bidding on the market price is analyzed. Agent-based simulations are
presented. The simulation results show the feasibility of the proposed bidding strategy.
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1. Introduction

In the past decade, the electric utility industry in
many countries around the world has been undergoing
fundamental structural changes to introduce competi-
tion and enhance efficiency. The traditional vertically
integrated utility is deregulated to open up the system
to the market, in response to the pressures of privatiza-
tion and customer demands. Electricity and services can
be sold and purchased as a commodity through differ-
ent market structures. Under this deregulated and com-
petitive environment, economics and profitability have
become the major concern of every market participant,
and each of them will act in his/her own self-interest in
this new environment. '

Among the proposed market structures, the electricity
auction market has been widely experienced and imple-
mented in different countries with different protocols.
Market participants—electricity suppliers, and distribu-
tion companies—are required to submit their sealed bids
to the auction market to compete for power energy. All
participants winning the auction will be paid based on
the rules agreed upon by the participants. Thus, the
bidding strategy, which is essential for a successful busi-
" ness in this auction market, is becoming one of the most
important issues in deregulated electric industry. Mar-
ket participants can greatly improve their benefits by
strategic bidding.
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Developing bidding strategies for competitive suppli-
ers has been studied by many researchers in recent years.
Game theory ¥ is naturally the first choice to deal with
this issue and lots of works have been done using this
traditional theory. In‘Ref. (2), a Nash game approach
is used to study the pricing strategy in the deregu-
lated power marketplace, where each participant has
incomplete information about others. A method using
Cournot non-cooperative game theory to determine the
optimal supply quantity for each power producer in an
oligopoly electricity market is presented in Ref. (3). The
results show that the estimation accuracy of production
cost functions of rivals plays an important role in this
market. Different electricity market rules and their ef-
fects on bidding behaviors in a non-congestion grid are
analyzed in Ref. (4). The authors conclude that gener-
ators can take advantage of congestion in their strategic
bidding behavior. :

But game theory is not the only solution to this prob-
ler. In fact, due to the complexity, dynamics and uncer-
tainty of the restructured electricity market, evolution-
ary computation algorithms and reinforcement learning
are receiving increasing attention recently and becoming
major tools in solving this problem. A genetic algorithm
is developed in Ref. (5) to evolve the bidding strategies
of participants in a double auction market. Markov De-
cision Process is used to optimize the bidding decisions
to maximize the expected reward over a planning hori-
zon in Ref. (6). The optimal bidding problem is modeled
as a stochastic optimization problem in Ref. (7), and, a
Monte Carlo approach based method and an optimiza-
tion based method are developed to solve this problem.
An agent-based simulation model of a wholesale electric
market is developed in Ref. (13) to provide a source for -
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strategic insight into the diverse aspects of the emerg-
ing electricity marketplace, and Q-Learning algorithm is
used to generate the price offers for generation compa-
nies in a bilateral contracts market for electricity.

In this paper, the bidding strategy is viewed as one
kind of stochastic optimal control problem. known as
the Markovian Decision Problem (MDP)“®  and Q-
Learning algorithm ®®~0% is used to develop an optimal
bidding strategy for suppliers to maximize their long-
term profits in a daily repeated electricity auction mar-
ket. It is assumed that no supplier possesses the mar-
ket power, which can be used to manipulate the market
price to satisfy his/her own interest. Each market par-
ticipant in this market is assumed to have only infor-
mation on his/her own cost and the publicly available
information of the market, but lack information on other
participants. The market participants are also assumed
to be so many that it is very difficult for each supplier
to estimate other participants’ bidding behaviors. But,
each participant is designed to have the ability to use
the public information of the market and to learn from
experience,

Currently, there are two major market pricing rules
adopted in the electricity auction markets around the
world. One is the uniform pricing rule, the other is the
discriminatory pricing rule (“pay-as-bid”). Which one is
the better mechanism for electricity auction markets is
still an open question. It is also widely believed that, de-
veloping bidding strategy under different market designs
can provide a deep insight into the complex new elec-
tricity markets and identify how rules can be altered to
improve the performance of the market. Based on these
considerations, in this paper, we use the electricity auc-
tion market, which is under discriminatory pricing rule,
as the stage on which we develop bidding strategy for
electricity suppliers. And simulation results will show
that, even under the discriminatory pricing rule, when
the power supply is bigger than the power demand, in-
tensive competition among suppliers forces them to bid
prices close to their true costs.

This paper is organized as follows: Section 2 describes
the model of a day-ahead electricity auction market.
Section 3 presents the Q-Learning algorithm and the
proposed supplier bidding strategy. Section 4 shows the
simulation results, which is based on a multi-agent simu-
lation method. Section 5 gives the conclusion and future
work.

2. A Day-ahead Electricity Auction
Market

A day-ahead electricity auction market with no
demand-side bidding is assumed here. In this day-ahead
auction market, all suppliers wishing to sell power to-
morrow must submit their bids today to an Indepen-
dent Contract Administrator (ICA)“®, who will clear
the market, determine which supplier should be used to
meet the forecasted load, and check if the security and
reliability constraints of the power system are satisfied.
The relationship of the ICA and suppliers is shown in
Fig. 1.
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Fig.1. The relationship of suppliers and the ICA
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Fig.2. An example of power load forecasted by
the ICA
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Fig.3. An example of supply curve at hour h of
the next day

Everyday suppliers submit their sealed bids with price
(3/MWh) and quantity (MW) at which they are willing
to sell during the next day to compete for the power
load forecasted by the ICA. An example of forecasted
power load by the ICA is shown in Fig. 2. In this paper,
hourly bids rule is used, that is, each supplier submits
24 separate hourly bids everyday to compete for power
load over the 24-hour of the next day.

The bids from suppliers are ranked by the ICA from
the cheapest to the most expensive to construct a sup-
ply curve on an hourly basis. Fig.3 gives an example of
the supply curve. The ICA will then select the cheapest
supplier until the load of each hour of the next day is
met. It should be pointed out that we regulate in this
clearing algorithm, when the bidding prices of several
suppliers are the same, the supplier with smaller bid-
ding quantity is given the first priority to be accepted
to protect the medium-and-small size enterprises.

At the end of every trading day, each supplier is noti-
fied of his hourly dispatched power (MWh), which is the
quantity called into operation during the next day, and



the hourly market price (§/MWh), which is assumed to
be the only publicly available information to each sup-
plier in this paper. The market price at hour A is defined
 to be the average bidding price Pg,q(h) of dispatched
suppliers at hour h as follows:

where n denotes the number of the suppliers in the elec-
tricity auction market, P(i,h) represents the bidding
price (§/MWh) of supplier % at hour h, and Dp(i, h)
is the dispatched power (MWh) of supplier ¢ at hour h.

In general, increasing the amount of information avail-
able to all bidders could increase the efficiency of the
auction market. Therefore, it is better for the Indepen-
dent Contract Administration (ICA) to publish other
information, such as the maximum and minimum bid
prices of everyday, as well as the hourly market price.
But, the problem is that increasing the amount of pub-
licly available information could at the same time lead
to the risk of making the unexpectedly collusive behav-
ior between bidders easier to implement. Therefore, we
assume in this paper that the hourly market price is the
only publicly available information to all bidders in an
attempt to reduce the potentiality of collusive behavior
between bidders.

Each supplier winning the market is paid based on
a discriminatory pricing rule. Although the discrimina-~
tory pricing rule is not so much popular, it is used in UK
balancing market ®. According to this pricing rule we
adopt here, winners are paid at their own bidding prices.
The reward 7 (i, h) from the bid of each supplier ¢ at hour
h is calculated based on the bidding price P(i,h), unit
production cost C; and the dispatched power Dp(i, h):

7(i,h) = (P(3,h) — C;) * Dp(i, h) - vvvvvnens (2)

where C; ($/MWh) is the unit production cost of sup-
plier 7’s power supply. It should be noted that, in this
‘simplified model, each supplier’s production cost is rep-
resented as a linear function of his dispatched power,
and no startup costs and shut down costs are consid-
ered here. In practice, the unit production cost of each
supplier’s power supply varies with the total output of
power supply, and startup costs, shut down costs and
ramp rates of generator cannot be ignored.

3. Devéloping Bidding Strategy Through
- Q-Learning Algorithm

Q-Learning (QL) algorithm is a reinforcement learn-
ing algorithm ®® proposed by Watkins for solving the
Markovian Decision Problems with incomplete informa-
tion. It does not need an explicit model of its envi-
ronment and can be used on-line to find the optimal
strategy through experience obtained from the direct in-
teraction with its environment. These features make it
well suitable for dealing with the decision-making prob-
lems in the repeated games against unknown opponents,

agent
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Fig.4. An illustration of agent’s interaction with
its environment

such as the bidding strategy in the electricity auction
market. Based on the Q-Learning algorithm, this sec-
tion provides an optimal bidding strategy for suppliers
to maximize their profits in the day-ahead electricity
auction market.

3.1 Q-Learning . Algorithmn  Assume that a
learning agent interacts with its environment at each
of a sequence of discrete time steps, t = 0,1,2,..., as
shown in Fig.4. And let S = {s1,82,83,...,8n} be
the finite set of possible states of the environment and
A = {ay,a9,as,...,a,} be the finite set of admissible
actions the agent can take. At each time step ¢, the
agent senses the current state s; = s € S of its environ-
ment, and on that basis selects an action a; = a € A.
As a result of its action, the agent receives an immediate
reward 74, and the environment’s state changes to the
new state sy1q1 = s € S with a transition probability
PSS/ (a) .

The objective of the agent is to find an optimal policy
7*(s) € A for each state s to maximize the total amount
of reward it receives over the long run. Q-Learning algo-
rithm provides an efficient on-line approach to determine
the optimal policy by estimating the optimal Q-values
Q* (s, a) for pairs of states and admissible actions.

The Bellman optimality equation for Q*(s, ) is given

~ as follows:

’

Q" (s,a) = Z'PSS/ (a)[R,, + vmax Q* (s, a)

where RI, = is the immediate reward from taking
action a in the state s and transitioning from state s to
s/, and v (0 < v < 1) is a scaling factor used to dis-
count the future rewards. If « is small, it means that
the expected future rewards count for less.

Any policy selecting actions that are greedy with re-
spect to the optimal Q-values is an optimal policy *7.
Thus, the optimal policy is

m*(s) = arg méxx(Q*(s,a)) ---------------- (4)

Without knowing the P, (a), the Q-Learning algo-
rithm can find the Q*(s,a) in a recursive manner by
using the available information s, a¢, st+1 and r¢. The
update rule for Q-Learning is
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Q:(s,a) + aAQt(s,a)
if s=s; and a = a;
Qt(sﬂa)

Qt+1(3, a) =

otherwise

The learning rate a (0 < a < 1) reflects the degree
to which estimated Q-values are updated by new data.
High values imply more rapid updates, with a risk of
instability .

If the Q-value for each admissible state-action pair
(s,a) is visited infinitely often, and the learning rate «
decreases over the time step ¢ in a suitable way, then
as t — 00, Q:(s,a) converges with probability one to
Q*(s,a) for all admissible pairs (s, a).

3.2 QL-based Supplier Bidding Strategy In
the repeated day-ahead electricity auction market, each
supplier will attempt to maximize his/her profit in a long
run and to reduce risks. The need to maximize profit
and manage risks at the same time is becoming a dom-
inant industry problem ®¥. Based on the Q-Learning
algorithm, a bidding strategy for suppliers is developed
to balance the tradeoff between the expected profit and
risks. As we assumed in the above section that the pro-
duction cost of each supplier at each hour is a linear func-
tion of his dispatched power, so each supplier will bid
his maximum generation capacity (MW) as his bidding
quantity at each hour of every trading day to attempt
to maximize his profit in this auction market, with an
expectation that his generator will run at the maximum
capacity all day. Therefore, the bidding strategy results
in an hourly bidding price decision-making problem.

As described earlier, it is assumed that each supplier
has information only on his/her own cost and the public

- information of hourly market price, but lacks of informa-
tion on the rivals. Thus, the bidding process is a stochas-
tic process. During this stochastic bidding process, each
supplier will attempt to meet his/her objectives of:

e increasing his/her profit from day to day,

® satisfying the target utilization rate on his/her gen-

erator everyday,
as described in Ref. (10). The target utilization rate
is defined as the ratio between the expected dispatched
power (MWh) and the maximum power output (MWh)
of generator everyday.

To apply the Q-Learning algorithm in the bidding
strategy for suppliers to achieve their objectives, it is
necessary to define the states, actions, and rewards first.

(1) States  The state of environment is represented
by the market price, and has 20 different levels which
is equally distributed between 0$/MWh and the mar-
ket ceiling price that is specified to 20 $/MWh here. As
shown in Fig.5, if the market price is within the inter-
val of (19,20] $/MWh, then the environment’s state is
in state 19. It should be noted that the state of envi-
ronment should include other market information such

States

state 0 state 1 .. state 19

| 1 | I |
o 1 2 19 20

Market Price ($/MWh)

Actions
action Q action 1 action 19
L [ | 1 J
unit production ($/MWh) 20
cost (market ceciling pﬁce)

Fig.5. The definition of environment’s states and
agent’s actions
as predict power load of the next trading day, but these
are not taken into account here for simplicity.

(2) Actions Each rational supplier will generate
bidding price between his/her unit production cost and
the market ceiling price. Therefore, it is assumed here
that each supplier’s admissible actions are represented
by 20 intervals which are equally distributed between
his/her unit production cost and the market ceiling
price, as shown in Fig.5. Applying an action a is to
randomly generate a bidding price in the ath interval.

(3) Rewards  Taking into account the requirement
of utilization rate on supplier’s generator everyday, it is
assumed here that it is required a constant utilization
rate on generator for each hour of everyday, for simplic-

"ity. The reward of supplier ¢ from his bids at hour h

under action @ and state s, considering the constant uti-
lization rate for that hour, is calculated based on the
following formula, which can be viewed as a penalty
function:

utly(R)\"

rin(s,a) = (i, h) * (#(t)) ............. @)
where wutl; is the target utilization rate, utl,(h) is the
actual utilization rate at hour h, and n (n =0,1,2,...)
is a constant which shows how strictly a supplier tries to
satisfy the requirement of utilization rate. If n is large,
it implies that the supplier is strict in satisfying the re-
quirement of utilization rate, and can be thought to be
of risk averse type. If n = 0, there is no penalty effect
on the reward, and the supplier can be viewed to be
opportunistic.

3.3 Algorithm Implementation As described
earlier, startup.costs, shut down costs and ramp rates of
generators are not considered. It implies that whether
the operation status of generator is on or off at any
hour, it does not affect the operation status of gener-
ator at the next hour. Therefore, the whole day profit-
maximizing problem can be decomposed into an hourly
profit-maximizing problem. Based on this consideration,
in this paper, Q-values for state-action pairs at each hour
of a supplier are stored in a lookup table. An example
of the Q-values for state-action pairs is given in Table 1,
where the Q-values in bold style are the maximum values
under each state and the actions associated with them
are the optimal actions a supplier would take most likely.
- The steps of suppliers’ learning and bidding are given
as follows:



Table 1. An example of the Q-values of state -
action pairs

.|action 13| action 14 |...| action 16|...
state 15 493 379 153
state 16 485 257 290
state 17 479 529 298
state 18 501 5562 602

(1) Step 1: State identification At the beginning of
the current trading day, each supplier uses the publicly
available 24 separate hourly market prices on the previ-
ous trading day as the 24 hourly states of the current
trading day.

(2) Step 2: Action selection — After having obtained
the 24 hourly states, each supplier inquires his/her Q-
value lookup tables to select the optimal action with
maximum Q-value in each state and generate the bid-
ding price at each hour according to the definition of an
action.

To balance the exploration and exploitation of suppli-
ers’ learning from the dynamic electricity auction mar-
ket, e-greedy method ®® is introduced to the QL-based
supplier bidding strategy. That is, during the action
selection process, the supplier selects most of the time
an action a with maximum Q(s,a) in the state s; but,
with a small probability ¢, he also randomly selects an
action a from all the admissible actions in the state s, in-
dependently of the Q-values Q(s,a), to explore the new
optimal bidding strategy in the dynamically competitive
market.

(3) Step 3: Q-value update At the end of the cur-
rent trading day, after being notified of the dispatched
power and the market price at each hour, each supplier
calculates the rewards according to Eq. (7), and updates
the Q-values of each hour based on the available rewards
and next states which are the hourly market prices of
current trading day, according to Egs. (5), (6).

4. Simulation Results

‘An agent-based simulation method is developed here
to test the bidding strategy proposed in the above sec-
tion. The application of agent-based simulation method
to deal with issues in the deregulated electricity indus-
try is a newly promising research area @®(®. In this
paper, it is assumed that there are 10 adaptive agents,
each of them representing a supplier who participates
in the day-ahead electricity auction market and is able
to explore and exploit the optimal bidding strategy to
meet his/her profit-maximizing goal in the competitive
environment. Table 2 gives the maximum capacities,
unit production costs and strategic parameters of these
agents. As can be seen from the capacity levels of all

agents, no supplier possesses the market power since no

agent has the dominant market share.

According to the definition of each strategic parame-
ter, these 10 agents can be divided into two categories.
Agents with parameters: a = 0.7, v = 0.1, ¢ = 0.1,
n = 2 can be viewed to be risk averse; others can be

Table 2. The maximum capacities (MC), unit pro-
duction costs (UPC) and strategic parameters of 10

agents
agent | MC UPC o | v e |n| utl
M) | ($/MWh)

0 45 8.0 0.7|0.1| 0.1 2/0.90
1 45 8.0 0.7({0.1| 0.1 |2]0.90
2 45 8.0 0.1/0.5|0.01|1]0.80
3 45 8.0 0.1/0.5|0.01|1]0.80
4 50 10.0 |0.7,0.1] 0.1 |2|0.90
5 50 10.0 |0.1(/0.5{0.01|1|0.80
6 50 10.0 |0.1]/0.5/0.01|1|0.80
7 30 12.0 |0.7|0.1] 0.1 |2]0.80
8 30 12.0 |0.1]/0.5/0.01|1]0.70
9 30 12.0 [0.1]0.5(0.01|1|0.70
25
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Fig.6. The average hourly market price of every
trading day

thought to be of opportunistic type. Comparing the
agents of opportunistic type, these risk averse agents
can adjust their optimal policy quickly as the environ-
ment changes, count the expected future rewards for less
when making their decisions (selecting the optimal ac-
tions), maintain enough ability to explore new optimal
bidding strategy in dynamic environment and are less
greedy.

To obtain the initial Q-values of each agent at each
hour, the simulation process is designed to run first for
10,000 trading days with the forecasted power demand
by the ICA shown in Fig. 2. During this initial process,
the learning rate « is designed to be state-action depen-
dent varying with time, as used in Ref. (14). That is,

" the learning rate aqn(s,a) of each agent at hour A on

the trading day d is inversely proportional to the visited
number B4 (s,a) of state-action pair (s,a) up to the
present trading day, as follows:

1
ﬁd,h(s ’ a) (8)
After this learning process, the learning rate « is set back
to the value shown in Table 2, and the learned initial
Q-values are used to develop optimal bidding strategy
proposed in the Section 3.

Firstly, the impacts of the proposed bidding strategy
on the market price are investigated. With the learned
Q-values, the simulation process are carried out for an-
other 1,000 trading days under the same power demand
condition as shown in Fig. 2. .

Fig. 6 shows the average hourly market price during

ad’h(s, CL) =
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Table 3. The average daily rewards and actual
utilization rate of the 10 agents

agent 0 1 2 3 4
rewards ($) 7316|7333|6957|6952|6009
actual utilization rate|0.96/0.97|0.93|0.93|0.95
agent 5 6 7 8 9
" rewards (§) 5702|5744(2456|2338(2322
actual utilization rate|0.87/0.87|0.71/0.61|0.60
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Fig.7. The power load forecasted by the ICA after
1,000 trading days

the 1,000 trading days. As shown in this figure, the
intense competition among agents leads to the lowest
market prices during the off-peak load periods such as
at hour 0, 1 and so on, where the electricity supply is
much bigger than the power demand. However, dur-
ing the peak load period from hour 12 through 18, at
which there are shortages of the power supply, the mar-

ket prices are very close to the market ceiling price due -

to the agents’ learning to exercise market power. These
facts show that the proposed QL-based bidding strat-
egy is successful in generating optimal bidding prices at
different hours for agents in the day-ahead electricity
auction market.

Table 3 gives the average daily rewards and actual
utilization rate of these 10 agents during the 1,000 trad-
ing days. As shown in this table, the risk averse agents
can get more rewards from their strategic bidding and
have higher actual utilization rate on their generators
than those of opportunistic type at the same generation
capacity level.

Secondly, with the learned Q-values, the proposed bid-
ding strategy is tested for 2,000 trading days with a dif-
ferent power load case, where the power load forecasted
by the ICA during the first 1,000 trading days are the
same as shown in Fig. 2, but those in the following 1,000
trading days are changed as shown in the Fig. 7. This
change of the power load pattern can be thought to be
due to the change of seasons.

The average hourly market prices of the final 200 trad-
ing days of the first and second 1,000 trading days are
shown in Fig. 8. The changes of market price occur only
during the periods when the power loads are changed.
This fact suggests to some extent that the interactions
of these adaptive agents with QL-based bidding strategy
lead to a stable market equilibrium over a long term in
a stationary power load case, and also shows the pro-
posed approach is capable of dealing with the bidding
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Fig.8. The average hourly market price of the fi-
nal 200 trading days 1) during the first 1,000 trad-
ing days, and 2) during the second 1,000 trading
days
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Fig.9. The market price 1) at hour 11, and 2) at
hour 14 of everyday during the 2,000 trading days

price decision-making problem in the dynamic auction
market.

How the agents learn can be seen in Fig: 9, which dis-
plays the market prices at hour 11 and hour 14 during
the 2,000 trading days. Power loads are changed from
400 MW to 425 MW at hour 11, and from 450 MW to
400 MW at hour 14, respectively, on the trading day
1,000. As can be seen from this figure, when the power
load changes, the market price changes accordingly as
adaptive agents interact with each other and learn from
experience to develop their optimal bidding prices. It
implies that agents have sensed the change of power de-
mand and adjusted their bidding prices accordingly. Tt
should be noted that, it takes a few days for the market
prices to reach new dynamic equilibria at these hours
when the power demands are changed. This can be ex-
plained that Q-Learning algorithm has a slow conver-
gence. To reduce the influence of this drawback of Q-
Learning algorithm to some extent, it is believed to be
an effective way for agents to predict the hourly market
price and power demand and make their bidding deci-

" sions accordingly.

5. Conclusion and Future Work

Based on the Q-Learning algorithm, an optimal bid-
ding strategy was proposed in this paper to provide sup-
pliers an optimal approach to maximize their profits
in the long run from the day-ahead electricity auction
market. Each supplier with the proposed bidding strat-
egy can learn from experience and make full use of the



public information of the market. A penalty function
-was introduced to the calculation of the reward from
supplier’s bids. Supplier’s business type—risk averse or
opportunistic—were considered, the impacts of corre-
sponding strategy on the rewards and utilization rate
on generator were investigated. Also the impacts of the
proposed bidding strategy on the market price were an-
alyzed. Simulation results have shown the feasibility of
this QL-based supplier bidding strategy.

In this paper, we developed a novel supplier bid-
ding strategy in a day-ahead electricity auction market
where discriminatory pricing rule is used. Extending
our methodology to study markets where the uniform
pricing rule is adopted will be our future work.

(Manuscript received April, 19, 2002,
revised September, 27, 2002)
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