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This paper presents a vision and landmark based approach to improve the efficiency of probability grid
Markov localization for mobile robots. The proposed approach uses visual landmarks that can be detected
by a rotating video camera on the robot. We assume that visual landmark positions in the map are known
and that each landmark can be assigned to a certain landmark class. The method uses classes of observed
landmarks and their relative arrangement to select regions in the robot posture space where the location
probability density function is to be updated. Subsequent computations are performed only in these selected
update regions thus the computational workload is significantly reduced. Probabilistic landmark-based local-
ization method, details of the map and robot perception are discussed. A technique to compute the update
regions and their parameters for selective computation is introduced. Simulation results are presented to

show the effectiveness of the approach.
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1. Introduction

Robust and efficient navigation is the key issue in con-
trol and operation of autonomous mobile robots ®. Lo-
calization is one of the principal problems in robust nav-
igation, which task is to estimate robot location using

sensor data. Reliable and effective localization method

has to deal successfully with several issues. It must be
able to (1) stably track current robot position, (2) glob-
ally locate the robot without prior information on its
whereabouts and (3) autonomously recover from errors
in position estimation or incorrect previous information.
Simple and robust solutions, such as global positioning
systems, often conflict with the concept of robot auton-
omy. A number of methods that can locate the robot
without global positioning have been proposed and suc-
cessfully applied V) ®) Q0

Probabilistic Markov localization approaches offer a
good framework to deal with all the described issues al-
lowing to handle any degree of uncertainty in robot loca-
tion. The robot’s belief about its current posture is rep-
resented by a probability density function (PDF') which
is spanned over all open environment space and updated
by iterative Bayesian predict-and-match technique. In
the map the location PDF is usually approximated by a
3D probability grid  which can grow very large in size
for large environments and fine approximation resolu-
tion. Therefore, probability grids require large amounts
of memory and significant computing power to repre-
sent and process them. It makes them inefficient and
limits their use in real-time applications. This problem
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was addressed by several researchers who suggested to
use selective computations ® and dynamic environment
representations ® for general open-space surroundings

or effective models for specific environments .

Recently, a family of Monte Carlo Localization (MCL)
algorithms has become popular (7 9@ These meth-
ods approximate PDF by the density of weighted point
samples distributed in the continuous state space. As
the result MCL methods can overcome resolution limita-
tions of Markov localization and can scale their compu-
tational requirements by changing sample set size. Nev-
ertheless, MCL: algorithms also have limitations. They
are very sensitive to the number of samples being used
for approximation and to the choice of resampling meth-
ods used to update sample sets after movements or sen-
sor readings. The relation between size of environment
and required number of samples in MCL is far from ob-
vious and usually has to be determined in experiments.
The resampling method may fail to generate or may re--
move a sample in the right location which will result in
robot getting lost. The MCL methods also appear to
recover more slowly from unmodelled errors. Therefore
the Markov localization is still one of the most robust
and powerful localization methods.

This paper presents a selective approach that improves
the efficiency of probability grid based Markov localiza-
tion algorithm without degrading its ability to success-
fully deal with all the issues of the localization problem.
The approach makes use of visual landmarks that can
be detected by a rotating video camera on the robot.
We assume that the map contains visual landmarks of
several distinct classes with known positions. Gener-
ally, the vision system can detect and classify landmarks
more reliably in contrast to the ultrasonic or range sen-
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sors which are easily confused in dynamic environments
with moving obstacles. Therefore we can avoid the viola-

tion of the Markov assumption which states that sensor

readings for given state are conditionally independent.
- In order to selectively update the posterior location

PDF in an efficient way the method uses the information

about currently detected landmarks. This information
includes combination of recognized classes of detected
landmarks and landmarks relative arrangement with re-
spect to the robot. Matching detected landmarks to
ones stored in the map allows us to define the regions in
the robot posture space for selective computations. The
resulting regions take into account the uncertainties in
robot perception and map information. Only in these re-
gions the conditional perceptual model is computed and
the posterior location PDF is updated on the current
‘, matching and the following prediction steps. Thus the
~ computational workload is significantly reduced. When
more than one landmarks are detected our approach
becomes similar to triangulation localization methods.
However it does not require the robot to detect three or
more landmarks at a time to localize itself — the proba-
bilistic framework allows the method to make use of any
available landmark sightings to refine the robots’s belief
about its current position.

The paper is organized as follows. Probabilistic
landmark-based localization method is reviewed in sec-
tions 2 and 3. Section 4 discusses details of the map and
robot perception. A technique to compute the update
regions and their parameters for selective computation
is introduced in section 5. Section 6 presents the results
of simulations to show the effectiveness and robustness
of the method. In particular, the solutions of the global
localization and the so-called ”kidnapped robot” prob-
lems are presented.

2 Landmark-Based Locallzatlon

The mobile robot’s locatlon can be defined by the fol-
lowing state vector

§=1[p Yp 9"

The environment can be represented as a state space 2

which spans over all possible robot postures in the given
map. The map also contains a set of visual landmarks

L={l,...,in.},

whose positions in the map are known with given ac-
curacy. Generally, the mobile robot operation can be
represented by the sequence of consecutive steps. On
t-th step of operation, the robot changes its state by
executing a sequence of movements, denoted as a, dur-
ing which the odometry is used to estimate the relative
change in position. Also on t-th step the robot utilizes
a video camera to detect a set of landmarks \

ﬁt(f) = {Z]_,...,ZNt} C £,

Each detected landmark is described by some parame-
ters that allow to classify it and to estimate its location
relative to the robot. If we assume that the motions and

0 < Ny <Np.

landmark detections are performed in sequence, then the

localization problem can be stated in the following gen-

eral terms: )
Estimate &,

given ﬁt, ﬁt_l, ... ,ﬁo, and at,a:_1,...,a0.

3. Markov Localization Method

According to Markov localization approach the robot’s
confidence for being at a definite location is expressed by

‘a probability density function P(¢), defined in all state

space § € 2. To obtain a ‘true’ posture £* one may use
an appropriate statistical estimator, such as maximum
likelihood estimator

& = argmax£P(§). ......................... (1)

The distribution of probability density in P(£) is con-
ditioned on the history of movements and sensor read-
ings. In other words, P(£) is estimated recursively by
applying Bayes formula with conditional probability dis-
tributions calculated for the current motion or sensory
data. The sensor readings should satisfy the Markov
assumption about conditional independence, which, in
general, does not hold for dynamic environments with
moving obstacles .

For each motion on ¢-th step P(£) is updated by the
following prediction equation

P(€,) = / Pu(€)€,_) P(€,_y) dE,_y, oo @)

where P,(&,l€, ) is the conditional transition proba-
bility for a move a that changed the state by A¢ from
previous state &;_; to &,. Equation (2) is integrated over
all previous possible locations &,_;.

When a set of visual landmarks £, is observed P(& ) is
updated by the following matching equation

P(&) =1 P(£1&) P(&,), - vrrrvrnereenn. (3)

where P(£,|£) is the likelihood of observing &; condi-
tioned at &, called sometimes perceptual model; P(ﬁt) is
the prior probability density and n = Y5 P(¢,)| "
the normalization factor.

4. The Map and Robot Perception

In Markov localization the state space (map) is usu-
ally represented by a 3D position probability grid which
piecewise approximates P(£), though more complex and
dynamic representations also can be adopted . In this
paper we use the probability grid representation super-
posed by a 2D logical occupancy grid of the same reso-
lution.

In our method we use visually detectable landmarks.
Each visual landmark has known map coordinates p =
[z y]". Any environment feature (natural or artificial)
can represent a visual landmark if it can be captured by
a video camera and reliably recognized. Robust and reli-
able recognition of the visual landmark in a video image
helps to avoid the violation of the Markov assumption



for dynamic environments.

In order to fully utilize the landmark-based localiza-
tion the environment should contain many visual land-
marks. Some of the proposed methods rely on the as-
sumption that all landmarks are distinguishable ™. In
practice, when the number of landmarks is large it is
very difficult to make all of them unique. Here we as-
sume that each landmark can be attributed to a separate
class of landmarks I; € £;. One landmark can belong
only to one class and within each class the landmarks
are indistinguishable. These assumptions result in the
following conditions:

£=L8ULU...ULnN,,
0=L1NLN...NEN-

Landmark classes correspond to various types of land-
marks: markers of certain shape or color, stationary ob-
jects (door frames, corners, power sockets), etc. There
is a variety of image processing methods to accomplish
recognition and classification tasks. Selection of these
methods is not the focus of this paper. So each land-
mark in the map is described as I; = {p,, £x}.

To detect landmarks we propose to use a conventional
video camera with pan-tilt capabilities. Each detected
landmark l} is described by the following parameters
I; = {bj, £m}, where b; = [r; 7;]7 are estimated polar
coordinates (distance and bearing angle) of the land-
mark with respect to the robot. In order to estimate
relative position of the landmark using a single camera
we propose to enforce the condition for landmark place-
ment which will give necessary depth information. The
condition is that all landmarks of the same class should
be located at the same height above floor level. This con-
dition can be easily assured in practice since positions of
most salient features of indoor environment usually com-
ply with it. For more accurate measurement the optical
and kinematic parameters of the rotating camera have
to be determined through a calibration procedure .

As in the real world, we consider the robot perception
and environment map to have some errors and inaccu-
racies. Here we assume that these errors may be rep-
resented by zero-mean normal distributions. The land-
mark position p in the map is given with accuracy ex-
pressed by a variance o7 and corresponding covariance
matrix C; = o7 I**?. The relative position b of ob-
served landmark is estimated with accuracy expressed
by a covariance matrix Cy = diag[o? 02]. The estima-
tion error may be introduced by the noise in visual sys-
tem, the imperfections in environment and landmarks.
This error is usually modelled using the statistical data
collected from the sensory system. In our paper we as-
sume that distance measurement error o2 linearly de-
pends on 7, and the angular measurement error o2 is
constant.

5. Selective Computation Approach

To improve the computational efficiency of Markov lo-
calization one may use selective computation techniques.
A straightforward way is to set a minimal probability

Fig.1. Examples of update regions (2D projections).

threshold for the grid cell to be updated in Egs. (2)
and (3). This trivial approach saves some computations
but also have some pitfalls. The first is that each state
has to be accessed at least once on every iteration any-
way to check for the threshold condition. The second,
more important, drawback is that ignoring prior states
with low probability may deteriorate the method’s abil-
ity to recover from localization and measurement errors.
When these errors are finally detected in sensor match-
ing step then the minimal probability threshold may
force the method to switch to time consuming global
localization (when the robot cannot normally operate)
instead of considering other states with low probability
that possibly correspond to a true location. This case
is illustrated in our simulation of the kidnapped robot
problem. .

In our selective approach we suggest establishing ge-
ometrical constraints which will specify possible areas
in the state space where the location PDF is updated
in (2) and (3). To define the areas, which we call the
update regions, we match the set of detected landmarks
to the landmarks stored in the map. Landmarks types
and their relative arrangement are used in the match-
ing process. The update regions are attached to the
matched groups of landmarks and mapped into discrete
state space represented by a probability grid. Only the
discrete states that are spanned by one or more update
regions are accessed by update algorithms. The exam-
ples of such update regions for one (a), two (b) and
multiple (c) observed landmarks are shown in Fig. 1 as
2D projections into 3D state space (the actual update
regions are three-dimensional). This approach is some-
what similar to the one described in ®* which employed
landmark-robot relative poses to track multiple location
hypotheses in landmark-attached reference frames using
MCL.

The process of selecting map landmarks that match
detected ones is described as follows. When a sin-
gle landmark is detected the update regions similar to
Fig. (1a) are simply attached to all landmarks of the
same type as the detected one. For two or more de-
tected landmarks the combination of their types and

~ the distance measure between their pairs are used to se-
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Fig.2. The pair of detected landmarks.

lect similar landmarks from the map. Information about
pairs of map landmarks is stored in the precomputed in-
dex which includes combination of their types {£;, £},
distance d = |lp; — p;| and its variance o3 = of; + o7}
The index includes every pair of landmarks for which the
condition d < 27,44 18 true, where ry,,, is the maximal
perceptual range of the robot. For each pair of detected
landmarks (Fig. (2)) the same parameters are computed:
types combination, distance d and distance variance 52.
To compute these parameters the landmark polar co-
ordinates b; and their uncertainties Cp; are converted
to the robot local cartesian frame. The uncertainty in
measured distance 67 is estimated by adding measure-
ment errors in robot cartesian frame and projecting the
result into the line connecting both detected landmarks,
namely

62 = Z(a?i cos?(0 — ;) +r2 o2, sin?(0 — 1;)),(4)
2

where 8 is the angle between the line connecting two
landmarks and X axis of the robot reference frame. The
candidate pairs of map landmarks are selected by match-
ing landmark types, similarity criteria S < Syaz condi-
tion and pair combinations. The matching similarity
criteria S for a pair is calculated as

__la—d

NZEEY

Each update region is defined by its center and size.
The size is defined by the uncertainty resulted from mea-
surement errors and map inaccuracies. This uncertainty
is expressed by covariance matrix C.. In single land-
mark case the update region center coincides with a
landmark and the uncertainty C, € R?*? is best com-

puted in polar reference frame attached to the landmark
as

............................. (5)

C,=Co+JC IV, o (6)

where J = 9b/0pT is the jacobian transformation ma-
trix. This covariance matrix defines the ‘thickness’ of
the hollow square in Fig. (1a) and the width of distribu-
tion in ¥ dimension. '

In other cases the center of update region p, is com-
puted using triangulation techniques™. The uncer-
tainty in position of the center and the size of the re-
gion are expressed by C, € R**3, which is computed in
+ cartesian reference frame as

Ny X
Cr=3 (T CoiThi+ Ty T, ) oo (7)

=1

where Jp; = Op, /0bT and J,; = 9p,/0p?. The actual
size of regions is computed from C, using preset value
of maximum standard deviation for normal distribution.

Before updating the location PDF in Eq. (3) the con-
ditional probability distribution P(£|€) has to be com-
puted. First, the probability distribution is calculated
for each update region using the following formulas: for
single landmark

p(fl\é) = o (AL, Cp) v (8)
otherwise
P(EIE) = d3 (AP, Cr),y --vvvemeeieen (9)

where ¢2 and ¢3 are the 2D and 3D Gaussian distribu-
tions defined in polar and cartesian reference systems,
respectively. The overall conditional perceptual model
for given location £ is defined by the expression

P(mﬁ) =1- H (1 —p(ﬁlﬁ)) e (10)

u

where N, is the number of update regions that include
the location & in 3D space.

Since P(£|€) is zero outside update regions the result
of Eq. (3) is also zero in these locations. Therefore the
location PDF needs to be updated in the matching step
only in locations spanned by at least one update region
in the map. Locations outside any of update regions in
the probability grid are assumed to have zero probabil-
ity and not accessed by the algorithm. It is important
to mention that the prior probability P(€,) in Eq. (3)
in our update algorithm implementation is assumed to
have very low background noise that is larger that zero.
In our case we set this value to 0.01 of the uniform PDF
in Z. This assumption does not affect the normal oper-
ation but helps to reset the posterior PDF to the most
recent sensor reading if (a) the observation is completely
not supported by prior information (‘kidnapped’ robot
problem) or (b) the observation error falls out of pre-
dicted range due to unmodelled errors. This resetting
is performed automatically when the is normalization
factor 77 is computed in the end of update cycle. -

On the next (¢ 4 1) iteration the same update re-
gions are used to selectively designate possible locations
of £,_, for the prediction step in update equation (2).
Therefore using update regions in those equations can
significantly reduce the overall computational workload.

5.1 Summary of the Algorithm

Movement update:

e apply Eq. (2) to all locations &,_; that are inside
update regions calculated on the previous (¢ — 1)
step. ’

Sensor update:

® match detected landmarks to map landmarks and
select candidate combinations;

e for every region compute p, and C,, and map
the region into the discrete state space coordinates
(probability grid);

e compute a perceptual model p(£|€) in each region
and join them into the overall distribution P(£|¢).



® apply Eq. (3) to all locations inside update regions.
If P(§,) =0, set P(&,) = 0.01/Nz, where Ng is the
total number of states.

¢ compute normalization factor 7.

6. Simulation Results

To test the robustness and efﬁciency of the proposed
approach two simulations of different localization prob-
lems were performed. The global and the so-called ‘kid-
napped robot’ localization problems were considered.

The robot’s motions are modelled to be inexact, so the
uncertainty related to the location predicted by odome-
try is growing along the course of motion. The odometry
position uncertainty is expressed by the covariance ma-
trix C, € R**® which is continuously updated by low-
level robot controller during the move a. The update
technique is similar to the one described by Crowley .

The accumulated uncertainty C, at the end of the move

a is used to compute conditional transition probability
Py (&,€,—1) in Eq. (2) using the following expression

Po(&,€,_1) = ¢3 (AE,Co), +vvvvvvvnmnnnnns (11)

where ¢35 is 3D Gaussian distribution.

The map in simulations had size 15x12.5 m and con-
tained three indistinguishable visual landmarks of the
same class. The landmarks positions were known with
limited accuracy: 0121 = 0.08 m?, O’l22 = 0.03 m?,
0% = 0.1 m?. The map was represented by a proba-
bility grid with linear resolution of 0.25 m and angular
resolution 15° totaling to 72000 possible states. In both
simulations the mobile robot was able to detect only one
landmark at a time, so the area of update regions was
‘the largest possible (see Fig. 1).

In the first simulation the proposed method was used
to solve the global localization problem which is to esti-
mate robot location in the map without knowing initial
position. The results of simulation in progress for this

problem are shown in Fig. 3. In this and next figures |

the 2D projections of location probability density func-
tion P(€) are shown, where darker areas correspond to
robot locations with higher probability. The actual lo-
cation of the robot is shown by the crossed circle. The
approach took four steps (four moves and observations)
to converge. During its movements the robot observed
a sequence of landmarks (#1, #2, #3), one at a time.
First two figures show robot’s location belief after ini-
tial observation and the first movement with landmark
#1 in sight. The rightmost figure show computed robot
position after fourth step when landmark 3 was sighted.
On average only 5.3 % of all states were accessed and
updated.

Simulation results for the so-called ‘kidnapped robot’
localization problem are shown in Fig. 4. In this case
the robot is intentionally subjected to localization er-
ror to test the ability of the method to recover from
it. The robot believes that it is perfectly localized but
his location belief is wrong (see left Fig. 4). The actual
robot’s path in this simulation is intentionally chosen to
be ambiguous as a mirror reflection of robot’s believed
path with respect to landmarks #2 and #3. Since these

landmarks are of the same class the robot cannot tell the
difference between them. This makes the robot think
that his incorrect location is true for some time (mid-
dle figure - landmark #2 is sighted and misinterpreted
as landmark #3). Only whén the unexpected landmark
#1 is detected the method abandons its previous wrong
location and finds a true location after one update of
posterior in Eq. (3) (right figure). This was possible be-
cause the approach kept track of another probable loca-
tion estimate that resulted from previous observations
along the path. When the robot was deceived by the
ambiguous sensor data on first steps and the alterna-
tive location had very small probability that could be .
neglected if the minimal probability threshold was used.
But when the robot had received new sensor data that
completely did not match prior location estimate the
low probability guess was automatically brought from
background by normalization as a second best estimate.
Here it took five steps to converge the estimated posture
to the true one. On average only 5.6 % of all states were
accessed and updated in (2) and (3).

7. Conclusion

In this paper we presented a selective vision and land-
mark based approach to improve the effectiveness of
Markov localization with probability grid approxima-
tion. The approach uses visually detectable landmarks
that are distinguishable only by their types. Landmarks
of the same type are undistinguishable. A detected land-
mark is described by corresponding landmark type and
its coordinates relative to the robot. A map landmark is
described by its type, location in the map, and location
uncertainty.

The efficiency is achieved by selectively updating the
probability grid only inside estimated update regions de-
fined in the state space. The update regions are at-
tached to the landmarks in the map that are similar to
the detected ones. The number of update update re-
gions and their placement are decided by matching the
set of detected landmarks to the set of map landmarks
using types of detected landmarks and their relative ar-
rangement with respect to the robot. The size of update
regions is determined by fusing the coordinate uncer-
tainties of matched map landmarks with the errors in

-estimating detected landmarks positions.

The update equations are applied only in these update
regions in the map state space on the current matching
and the following prediction iterations steps. Thus the
computational workload is significantly reduced. The re-
sults of simulations show that the approach is effective
and is able to solve all range of issues in the localization
problem, including global localization and recovery from
localization errors.

(Manuscript received March 18, 2002, revised October

25, 2002)
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Fig. 4. ' ‘Kidnapped robot’ localization simulation.
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