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Motivated by a general Hurwitz matrix expression involving a triplet of matrices, its Schur counterparts
are first derived. This time, they are expressed by a pair of matrices satisfying a certain nonlinear or norm
condition. It is then shown that the results can find applications in Schur stability analysis of a polytope of
matrices. Using the obtained expessions, two kinds of quadratic Lyapunov functions are proved to work for
the polytope:a fixed quadratic function and a parameter-dependent quadratic function. The first kind gives
-a well known extreme point result on quadratic stability of polytopes of matrices, while the second yields a

new result for the stability test of the polytope.
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1. Introduction

It is known that any Hurwitz stable matrix can be ex-
pressed by a triplet of matrices, two of which are positive
definite symmetric and the rest skew-symmetric ®@. The
expression is shown to effectively give Hurwitz stability
conditions for a polytope of matrices by ensuring the
existence of two kinds of Lyapunov functions ®. Omne
is a parameter-dependent quadratic Lyapunov function
and the other a fixed one which leads to a well known
quadratic stability property of matrix polytopes. Poly-
topic expressions of matrices are now acknowledged as
a typical way to model uncertainties involved in state-
space representations of control systems and their sta-
bility property has attracted attention of those who are
interested in robust stability ® @,

The purpose of this paper is to obtain a discrete-time
parallel of the above results. We first derive two novel
general expressions of Schur matrices. It turns out that
the matrices this time can be expressed in terms of
two matrices which satisfy certain restrictions. Based
on one of these expressions, we explore several char-
acterizations of the Schur property which are centered
around the norm condition. We then switch to Schur
stability analysis of a polytope of matrices as an ap-
plication of the above characterizations. As with the
continuous-time case, stability conditions are obtained
through a fixed quadratic function that guarantees the
quadratic stability for the polytope and a parameter-
dependent quadratic Lyapunov function ensuring their
stability. According to the two Schur stability expres-
sions, we provide respective quadratic stability condi-
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tion.

The remainder of the paper is plotted as follows. The
next section deals with the two expressions which enable
to characterize real Schur matrices. The first expression
originates from its Hurwitz stability counterpart, while
the second one comes from discrete-time Lyapunov equa-
tion directly. The third section is devoted to Schur sta-
bility conditions of a polytope of matrices derived from
using the representations just obtained. Existence con-
ditions of the two sorts of quadratic Lyapunov functions
are discussed. The paper concludes with remarks in sec-
tion 4.

A brief glossary for used symbols is shown in the fol-
lowing. Let X be an n x n real matrix, X € R"*™. The
eigenvalues and determinant of X are denoted by \;(X)
and |X|, respectively. For X = X’ with transpose sym-
bol ("), X > 0(> 0) means positive (semi)definiteness of
X, X < 0(< 0) negative (semi)definiteness and X > Y
with Y =Y’ implies X — Y > 0. A matrix X is Schur
stable, if [A\(X)| < 1foralli € n := {1,---,n} and
Hurwitz stable if ReA;(X) < 0, Vi € n. X is said to be
anti-Schur stable, if |A;(X)| > 1, Vi € n. Discrete-time
Lyapunov matrix equations(inequalities) are termed in
this paper as Stein equations(inequalities) to make a
distinction between the continuous-time and discrete-
time cases clear. The spectral norm of X is defined by
X = max; {\; (X X")}/2. When a matrix X satisfies
X 4+ X’ <0, such X is denoted as X ¢ H. Let II, be a
set of m-tuples of nonnegative numbers defined by:

m
Ha::{a:(a17"'7am) ‘Zal
=1

=1, 05 >0, i €m}

where m := {1,---,m}. For given m matrices, X; €
R™" i € m, we define a polytope of the matrices by
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P(Xi) = {Xa | Xoa =) Xy, acll).
i=1

A matrix-valued function ¢(X) with X € R™*™ and
d(X) = ¢(X)' is said to be matriz-conver, if ¢(a; X1 +
CVQXQ) < a1¢(X1) + 052¢5(X2), (041, 052) e Il,.

2. Some Characterizations of Schur-Matrices

Since the present work is motivated by the Hurwitz
matrix characterization ®, we first recall some results
about the bilinear trnasformation as a preliminary. By
the transformation, Lyapunov equation, Stein equation
and their solutions are connected smoothly.

Lemma 1 Consider two matrix equations;

AICPC + PcAc = _Qc; Qc Q/a
APA-P=-0Q, Q=0Q.

The equation (1) is referred to as Lyapunov equation,
" whereas (2) Stein equation. The bilinear transforma-
tion,

A= (A DA+T) " or A= T+ A)(I - A"

transforms (1) to the form of (2) where
)Q=2(I-A)Q.(I—-A.,), P=PF,
ﬁ) P = %(I - AIC)PC(I - Ac)a Q = Qc~

In (3), the existence of the inverse of matrices is as-
sumed and this is the case when A and A, are a Schur
matrix and Hurwitz matrix, respectively. ‘We cite the re-
sult i) from the reference (4) and ii) from (10), but they
can be proven by simple manipulations.

Relevant remarks are given here on the relationships

of Lemma 1.
Remark 1  The statement i) indicates that under the
transformation Lyapunov and Stein equations share a
solution if @ and Q. are appropriately chosen. Moreover,
solutions to Lyapunov inequality, A’ P, + P, A, < 0, and
those to Stein inequality, A’PA — P < 0, correspond bi-
jectively. On the other hand, ii) shows that equating the
right hand sides of (1) and (2) also gives corresponding
solutions.

Now, in the reference (4), it is stated that any matrix
A, € R™™ is Hurwitz stable , if and only if A. can
be expressed as A, = P, 1(S. — Q.) where P., Q. and
S, are some n by n real matrices with P, = P! > 0,
Q.= Q. >0and S, = —S5.. This explicit form of Hur-
witz matrices can be easily derived by modifying Lya-
punov equation®. The expression can also be made
more compact by setting R, = S, — Q. as

A.=P'R., R. € H.

The reference (8) captures the bilinearity of this ex-
pression for obtaining Hurwitz stability conditions of a
polytope of matrices.

In order to find a discrete-time parallel of the above
results, we focus in this section on expressions of Schur
matrices in terms of some appropriate matrices. Two
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expressions will be presented in the following. The first
one comes up immediately by way of the bilinear trans-
formation and the above Hurwitz matrix expression.
Theorem 1 A matrix A € R™ "™ is Schur stable, if
and only if A has the expression,

A=T+2(P,— R, 'R,

(5)

where P, = P, € R**™ and R, € R™*™ are some matri-

ces satisfying P, > 0 and R, € H, respectively.

Proof First of all, we bear in mind the fact that the bi-
linear transformation (3) is a one-to-one and onto map-
ping between the set of Hurwitz matrices and that of
Schur matrices. This fact almost explains the result,
but we follow little more steps to confirm it. Assume
Schur stability for A. Notice here that rewriting (3) as

A=(IT—-A) "I+ A)=T+24,"1 1)

and substituting (4) for A., we arrive at (5). Since the
form of (4) covers every Hurwitz matrix, the resulting (5)
also does every Schur matrix due to the above fact. The
converse implication, the expression (5) gives Schurness
of A, would be apparent. Q.E.D.
Theorem 1 takes a kind of detour route to desired
Schur matrix characterizations, since it rests on the
transformation and Hurwitz stability characterization.
‘We next show a result, which is direct in the sense that
Stein inequality is employed throughout. The follow-
ing theorem gives therefore a genuine counterpart of the
previous Hurwtz matrix expression which comes from
Lyapunov equation.
Theorem 2 A matrix A € R"*™ is Schur stable, if and
only if A has the expression A = MC where M € R™*"
with |M]| # 0 and C' € R™ ™ are such that ||[CM]|| < 1.
Proof The conclusion follows from the chain of equiva-
lent relations below.

A is Schur stable
< dP=P >0, APA-P<O0
— A'M{MiA— M{M; <0,

P = MM with some |M;|#0
<« C'C-M{M; <0, C=MA
<~ M'C'CM—-1<0, A= MC,

( by putting M = M; )

= |ICM|| <1, A=MC.

Q.E.D.

Remark 2 The matrices MC' and C'M share the eigen-
values counting multiplicity and CM is therefore Schur
stable as well. This is obvious, if we note they are sim-
ilar, but it holds in general regardless of their singular-
ity ®. Obviously, ||[CM]|| < 1 implies Schur stability
of CM and therefore of A = MC. On the contrary,
we observe that ||A|| = [|[MC|| < 1 does not generally
result from Schur stability of A. However, Theorem 2
exactly designates the class of matrices where the con-
dition || - || < 1 is equivalent to Schur stability: matrices
of the form of CM.



Hereafter, we refer the condition || - || < 1 appeared in
Theorem 2 for some matrix to the norm condition. The-
orem 2 reveals that any Schur matrix can be expressed
as a product of a pair of matrices satisfying the norm
condition, in the similar manner to the Hurwitz matrix
case given in (4). In contrast to Theorem 1, however,
Theorem 2 and its proof can yield a variety of ramifica-
tions, some of which we list in the following as corollar-
ies. The first one is immediate, if one takes note of the

fact that the matrix M can be chosen as M = P~1/2.

where P = P’ > 0 is a solution to the Stein inequality,
A'PA—P <0
Corollary 1 A matrix A € R™ " is Schur stable, if
and only if A is written as A = P~/2C where the ma-
trices P = P’ > 0,P € R"™"™ and C € R™ "™ satisfy
|[CP~/2|| < 1. ,

If we further specify C as symmetric, the result gives
merely sufficiency, because this restricts the form of A.

Corollary 2 If A has the form of A = P~1/2W1/2

with P = P/ > 0 and W = W’ > 0 satisfying P > W,
then A is Schur stable.
Proof By the assumptions, we have A’PA — P
W — P < 0, showing that the Stein inequality has a
solution P. Q.E.D.
Also, as a byproduct of Theorem 2, a parallel result
for the anti-Schur property is presented.
Corollary 3 A matrix A is anti-Schur stable, if and
only if A is expressed as A = MC with two non-
sigular matrices M € R™*"™ and C € R™™ satisfying
||[M~1C1| < 1.
Proof The anti-Schur property of A is equivalent to
the (sign-changed) Stein inequality A’PA — P > 0 with
P = P' > 0. By putting P = (M')"'M~! and
A'PA = C'C, the proof proceeds in the same way as
that of Theorem 2.- Q.E.D.
Remark 3 So far as A is nonsingular, A is anti-Schur
stable, if and only if A~! is Schur stable. In this case,
comparing the above corollary with Theorem 2 leads to
the correspondences, M « C~! and C' «+» M~'. Anti-
Schur stability is the mirror concept of Schur stability
. with respect to the unit circle, appearing in causality
discussions. Singularity of A brings to A~! an actually
singular situation, eigenvalues at infinity.

3.

Schur Stability of a Polytope of Matrices

In this section, thé previous results are applied to
Schur stability problems of a polytope of matrices, which
is a typical representation of uncertainties involved in
system models. We are concerned with Schur stability
of a polytope of m matrices P(A;) which is generated
by a given set of Schur stable extreme matrices {A4;}.
The polytope is said to be Schur stable, if so is any of
its member matrix. It is well known ®~® that Schur
stability of A;, i € m does not automatically imply that
of P(A;) and we need a stronger condition to ensure the
stability of P(A;). The results in the previous section are
suitable for such stability analysis because the pairs of
matrices appearing in the Schur property expressions are
all related to the matrix inequalities, which are known
to be crucial to treat matrix polytopes.
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Schur stability analysis of a matrix polytope can
be mainly done by two kinds of quadratic Lyapunov
functions: a fixed quadratic Lyapunov function and a
parameter-dependent one. In what follows, stability
conditions for P(A;) will be derived using these two
functions.

We start with conditions resulting from a fixed Lya-
punov function, which leads to quadratic stability of
polytopes. A set of system matrices is said to to
be quadratically Schur stable, if there exists a fixed
quadratic Lyapunov function proving Schur stability of
its every consituent matrix. It is furthermore known
that P(A4;) is quadratically Schur stable, if and only if
so is its generating matrix set, {A;}. This is due to
matriz convexity of the left hand side of Stein equation
(2) with respect to A®, that is, ¢(ay Ay + agds, P) <
a10(A1, P) + az¢(Ay, P), for any (oq, ) € I, where
¢(A, P) := A/PA — P. Tt thus follows that quadratic
Schur stability of {4;} and that of P(A;) are equiva-
lent. This statement holds evidently true as well in case
of quadratic Hurwitz stability because of the linearity,
or convexity for that matter, of the left hand side of
Lyapunov equation (1).

Now, we set out to obtain a quadratic stability condi-
tion for P(A;) using the expression of Theorem 1.
Theorem 3 Let aset {A;} of Schur stable matrices be
given and its members have an expression,

A;j =T+2(P - Ry) 'Ry, i € m,

where P = P’ > 0 and R,; € H. Then P(A;) is quadrat-
ically Schur stable. Conversely, quadratic stability of
P(A;) leads to (8) with some P and R;.

Proof Let A; be mapped to a Hurwitz matrix A;; by
the bilinear transformation (3). Reminding the proof of
Theorem 1, the expression (8) is nothing but to say that
Ag;’s have the form,

Aei =P 'Ry, iem,

which means the polytope P(A;) is quadratically Hur-
witz stable. Now, Remark 1 asserts that the set of Stein
equations, A;T);Ai — P, = —Q,;, i € m can have a com-
mon solution P; = P by suitably choosing Q; = @} > 0.
Putting in short, quadratic Hurwitz stability of P(A.;)
and quadratic Schur stability of P(A;) are equivalent
in the sense that they share a common P. Quadratic
Schur stability of P(A;) thus follows. The argument for
the other direction is obvious. Q.E.D.
We can also utilize the other expression of Schur ma-
trices given in Theorem 2 to devise a quadratic Schur
stability condition of P(A;). We exploit, however, Corol-
lary 1 in place of Theorem 2, because it dispenses with
the nonsingularity requirement on M in the theorem.
Recall that in Corollary 1 the matrix P amounts to a
solution to Stein inequality. The result is shown in the
following theorem, which endorses the above-mentioned
equivalence between quadratic Schur stability of P(A;)
and that of {4;} in an alternative way.
Theorem 4 P(A;) is quadratically Schur stable, if and
only if so is the set {A;}. Under this condition, A, €
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P(A;) can be expressed as A, = P-12C,, C, € P(Cy)
where P = P’ > 0 is a common solution to the set of
Stein inequalities AJPA; — P < 0, i € m and C; are
determined by A; = P20,

Proof We prove only sufficiency, since necessity part is
immediate. By the assumption that {4;} is quadrati-
cally Schur stable and Corollary 1, A; can be written as
A; = P~Y2C; where P = P’ > 0 and C; € R™*™ with
||C;P~Y/2|| < 1, i € m. We then have

Aa = i OJ,L'A,' =
=1

We can also obtain the norm condition,

> P20 = PRC,,

i=1

[CaPM2| <> aul|C:PTH2] < 1.

=1

The second inequality in the above owes to the assump-
tion. Envoking Corollary 1 again readily gives the con-
clusion that P(A;) is quadratically Schur stable with the
desired form of A,. Q.E.D.
Remark 4 The above theorem can be also easily con-
firmed, if we employ the weighted norm, || X||p defined
by ||X||p = ||P~Y/2X P/?|| for the extreme matrices
{4;}. One of earlier works which pointed out the ex-
istence of a common norm satisfying the norm condi-
tion for the extreme matrices as a stability condition
is the reference (6). Some partial characterizations of a
set of Schur matrices having a common solution to the
corresponding Stein inequalities are found in the refer-
ence (7). As opposed to such characterizations, however,
Theorems 3 and 4 give exact conditions for the exis-
tence of a common solution. It is remarked that other
than the stability analysis of uncertain systems, common
Lyapunov function problems are getting focused among
those who are interested in analysis of a wide range of
systems including fuzzy systems, switching systems and
hybrid systems and so forth.

Now, we turn to consider a parameter-dependent Lya-
punov function so as to guarantee Schur stability of
P(A;). The theorem below proves the stability by en-
suring the existence of a parameter-dependent solution
to the Stein inequality, also assuming the form of ex-
pression in Corollary 1 for every extreme matrix.
Theorem 5 Suppose A;, i € m are Schur stable and
take the form of

A =P V20, |leP7M? <1,

where C € R"*™ and P, = P/ > 0, i € m. Then any
A, € P(A;) is Schur stable and can be expressed as

20, B, .=P2 P, e PPV

Aa:poc

The proof is omitted since it follows the same line as

that of Theorem 4.

Remark 5  Theorem 5 gives a parameter-dependent
m

quadratic Lyapunov function P, =0, ainl/ )2
for a family of discrete-time systems, z(k + 1)
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Anz(k), k = 1,2,---, o € II,. In fact, we have

Al P, A, — P, <0, Va € IL,.

Theorems 4 and 5 thus give a fixed Lyapunov func-
tion and a parameter-dependent Lyapunov function for
the polytope, respectively. These results run in paral-
lel with their continuous-time counterparts reported in
the reference (8), where the bilinearity of the expression
of Hurwitz matrices mentioned in the foregoing section
is utilized. As with the case of their two continuous-
time counterparts, there exists a certain dual relation-
ship between Theorems 4 and 5. To observe this, assume
A;, 1 € m are nonsingular and consider the condition of
Theorem 5. Due to Remark 3, the Schur property of

A; = Pi_l/ ’C is equivalent to the anti-Schur property

of A;' = C~1P}*. This means that in the anti-Schur
expression of a matrix A = MC in Corollary 3 M is
supposed to be fixed for all ¢ € m. In other words, the
condition of Theorem 5 is no other than the existence
condition of a fixed common solution /' = U’ > 0 to a set
of the (sign-changed) Stein inequalities, A/UA; —U > 0.
On the other hand, as we have seen, the condition of
Theorem 4 is just for the existence of a common solu-
tion to the Stein inequalities. This interchangeability
between fixed matrices and those dependent on ¢ can no
longer hold, if any one of A;’s fails to be nonsingular.

At this point, one might wonder why Theorem 1 is
not able to join in the scheme to produce a parameter-
dependent Lyapunov function in the same way as The-
orem 2, by assuming the form of A; as

Ai :I+2<Pcz _Rc)_ch, 2 em .........

This is explained as follows. The assumption (12) allows
that A.;, the continuous-time counterpart of A;, has the
representation Ag; = P 'R., which exactly ensures the
existence of a parameter-dependent Lyapunov function
(7 P 1)1 for the matrix polytope P(Ag) ®. It
certainly ascertains Schur stability of the family of ma-
trices which are obtained from P(A.;) through the bi-
linear transformation. Unfortunately, however, since the
transformation can not keep the polytopic form of ma-
trices, P(A;) has a subset which is not included in such
a family. This implies that the above Lyapunov function
does not function for some members of P(4;). The sit-
uation suggests that we need to contrive another form
of parameter-dependent Lyapunov function for P(A;)
based on the knowledge of P.;. In this case, any Lya-
punov function that is matriz conver in terms of «
would doom to failure, because the matrix-valued func-
tion ¢(A, P) is not matriz-convez with respect to both A
and P, although it s convex with respect to only A. This
is a major difference between the fixed quadratic Lya-
punov function and the parameter-dependent one. In
this way, finding a parameter-dependent Liyapunov func-
tion via Theorem 1 involves some hurdles to be jumped
over.

4. Concluding Remarks

The contribution of this paper is twofold.
The first one is an attempt to obtain a discrete-time



counterpart of the known Hurwitz stable matrix expres-
sion. To this end, we employed two different approaches:
i)combination of the bilinear transformation with the
existent Hurwitz matrix representation, ii) direct use of
Stein inequality. In either way, Any Schur matrix can
be expressed as a function of two matrices that satisfy
certain inequalities. In particular, it is shown that in the
context of the latter expression a series of characteriza-
tions of Schur matrices are possible. They are centered
around some norm conditions.

The other contribution is the application of these char-
acterizations to the stability of a polytope of matrices.
Two types of Schur stability condition are derived for the
polytope based on the obtained characterizations. One
of them ensures the existence of a parameter-dependent
Lyapunov function, while the other a fixed one which
gives the extreme point result on quadratic stability of
matrix polytopes. Some of these results have their own
continuous-time counterparts and the results run in par-
allel with them.

In both Hurwitz and Schur cases, a key factor in ob-
taining the stability results is the parametric expressions
of the corresponding matrices. An open question is re-
lationships between a general existence region of eigen-
values of a matrix and a parametric expression of the
matrix.

(Manuscript received April 26, 2002, revised Decem-

ber 16, 2002)

References

(1) S.P. Bhattacharyya, H. Chapellat, and L.H. Keel: Robust
Control, Prentice-Hall, Upper Saddle River, (1995)

B.R. Barmish: New Tools for Robustness of Linear Systems,
MacMillan, New York, (1994)

B.R. Barmish and H.I. Kang: “A survey of extreme point re-
sults for robustness of control systems”, Automatica, Vol.29,
13 (1993)

S. Barnett and C. Storey: Matrix Methods in Stability The-
ory, Nelson, London, (1970) )

R.A. Horn and C.A. Johnson: Matrix Analysis, Cambridge
Univ. Press, Cambridge, 53, (1985) '

T. Mori and H.Kokame: “The convergence property of interval
matrices and interval polynomials”, Int. J. Control, Vol.45,
481 (1987)

Y. Mori, T. Mori, and Y. Kuroe: “A set of discrete-time linear
systems which has a common Lyapunov function and its exten-
sion”, Proc. of 1998 American Control Conference, Philadel-
phia, 2905.

T. Mori and H. Kokame: “A parameter-dependent Lyapunov
function for a polytope of matrices”, IEEE Trans. Automat.
Contr., Vol.45, 1516 (2000)

A.W. Marshall and I. Olkin: Inequalities:Theory of Majoriza~
tion and Its Applications, Academic Press, NY, (1979)

S. Kodama and N. Suda: Matrix Theory for Systems and Con-
trol, SICE, Tokyo, (1978)

(2)
(3)

(4)
(5)
(6)

(7)

(Member) received B. Eng., M. Eng. and
Dr. Eng. degrees in 1968, 1970 and 1977, re-
spectively all from Kyoto University, in Elec-
trical Engineering. From 1974 through 1990,
he was a faculty member of the engineering
department of the same university, first as
a research associate then associate professor.
Since 1990, he has been Professor of the De-
partment of Electronics and Information Sci-
ence, Kyoto Institute of Technology.

His research interest includes nonlinear system analysis, robust
stability problem and neural network analysis.

Takehiro Mori

Hideki Kokame (Member) received B. Eng., M. Eng. and
o Dr. Eng. degrees all from Kyoto University
in 1968, 1970 and 1978, respectively. From
1973 through 1980, he worked at the same
university as a research associate, and from
1980 through 1995 he was a lecturer, associate
professor and full professor with Osaka Insti-
tute of Technology. Since 1995, he has been
a professor with Department of Electrical and
Electronic Systems, Osaka Prefecture Univer-
sity. His research interests lie in robust control, control systems
design and time-delay system analysis.

982

IEEJ Trans. EIS, Vol.123, No.5, 2003



