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In this paper, we propose a design method of neurocontrollers (NCs) evolved by a genetic algorithm (GA)
for the backward movement control of a truck system with two trailers. The difficulty and complexity of the
backward movement control depend on the number of connected trailers and the angular limitations of the
trailer-truck system. In order to search for the best neurocontroller more quickly and effectively, for the two-
trailer system which has extremely small angular limitations, we propose a modified GA which adaptively
changes the number of offspring and the mutation rate according to the diversity of NC population. The
simulation results show that the modified GA significantly improves the search performance. We apply the
control method not only to computer simulations but also to experiments of a small-scale real mechanism.
The results of both show that the control method is highly effective.
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1. Introduction

Backward movement control of a trailer-truck system
is known to be one of the typical nonlinear control prob-
lems. Difficulty of control not only causes the dynam-
ics to be nonlinear but we also have to consider in-
herent physical limitations of the system such as the
“jackknife” phenomenon. For the control objects, the
soft computing fields of fuzzy control and neuro con-
trol have been reported. In these reports, it is shown
that fuzzy control exhibits good control performance for
the backward movement control of the trailer-truck sys-
tems  ®. With regard to neuro control, which is said to
be well suited for the nonlinear control ®, first Nguyen
and Widrow ® have successfully solved the backward
control problem using the back-propagation (BP) algo-
rithm. Second, Jenkins and Yuhas® report a small
sized neurocontroller (NC). However, on utilizing the BP
method it is necessary to compute the partial derivative
of the control object which isusually a very complex and
mathematically difficult process and sometimes, even
the partial derivative cannot be obtained.

Recently, a method of evolutionary computation
has been well studied and applied for many industrial
problems ™~®_ If the evolutionary computation such
as genetic algorithm (GA) is applied to the NC train-
ing, then the design of the control system becomes more
simple. In a previous study, Kinjo et al. ®® proposed a
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control method using NCs evolved by a GA to solve the
backward movement control problem. But in ref. (10),
the truck is connected to only a single trailer. Tt is
clear that the control problem becomes more difficult
when the number of connected trailers increases and
when the angular limitation of the trailer-truck system
is extremely small. The difficulty and complexity of the
problem depends on the the number of control variables
and the mechanism of the trailer-truck system. When
the truck system has two or more trailers and the phys-
ical angular limitations are extremely small, then the
method of NCs with GA is not often able to produce a
better controller, or the GA process takes too long to
obtain the NC that can control the trailer-truck system
successfully.

However, for a real trailer-truck system, it is often
necessary to connect two or more trailers, and the limi-
tations of the steering angle and of angular differences of
the trailers are not designed to be so large. The aim of
this study is to construct the NCs with GA more quickly
and effectively. We must determine a design method of
NCs that has better control performance for the two-
trailer system with extremely small angular limitation.

To solve these problems, we propose a modified GA
which adaptively changes the number of produced NCs
and the mutation rate according to the similarity of NCs.
In the GA process, we define index of diversity of the
NC population and examine the similarity of NCs using
the diversity index. If the diversity is lost then adap-
tive changing of both the number of offspring and the
mutation rate is applied. The simulation results show
that the modified GA significantly improves the search



performance. Finally, we apply the control method to a
small-scale real mechanism for verifying the effect of the
control method.

The contents of this paper are as follows. In section
two, a model of the truck system with two trailers is
shown. In section three, the control system is described.
In section four, the modified GA is shown and is applied
to the NCs evolution. In sections five and six, simula-
tion and experimental results are given. In section seven,
the efficiency of the methods is discussed. Section eight
contains the conclusions.

2. Model of Trailer-Truck System

Figure 1 shows the model of a truck system with two

trailers and its coordinate system. Table 1 shows the

parameters of the trailer-truck system.
The kinematic model of the system is governed by the
following equations
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Fig.1. Model of a truck system with two trailers.

Table 1. Parameters of trailer-truck system.

1 length of truck (=0.129 [m])
L length of trailer (=0.124 [m])
At sampling time (=1.7 [s])

v constant speed (=-0.03 [m/s])

vertical position of 2nd trailer

g (1) angle of truck
z1(1) angular difference between truck and 1st trailer
9 (1) angle of 1st trailer
x3(t) | angular difference between lst trailer and 2nd trailer
x4 (t) angle of 2nd trailer

(t)

)

horizontal position of 2nd trailer
u(t) steering angle

ze(t + 1) = z6(t) + vAL - cos[z3(t)]

o Tl 1;+z4(t)]. ______ -

The control purpose is to back up the trailer-truck sys-
tem along the straight line (x5(t) = 0) without forward
movement. That is

21(t) = 0, z3(t) — 0, z4(t) — 0, z5(¢) — 0.

For simplicity, the variable zg(t) is not a control vari-

able in the trajectory control.

3. Control System

Figure 2 shows the control system using NC with GA
evolution. In the figure, NC denotes a neurocontroller
which receives the error of angles z1, x3, x4 and position
5 as inputs and outputs steering angle u. The trailer-
truck system receives the steering angle u and outputs
the state variables of the next step while referring to the
present configuration. GA denotes the genetic algorithm
procedure.

Figure 3 shows the structure of the NC. The NC is a
three-layered feed-forward neural network. In the hid-
den layer of the NC, the most popular node function,
sigmoid function, is used. The node function of the in-
put and output layers is a linear function.

By applying the genetic algorithm to the NC evolu-
tion, we obtain the “best individual” from the evolved
NCs.

4. Genetic Algorithm

4.1 Evolution of NCs Figure 4 shows the flow
chart of the evolution procedure of the NCs. The proce- -
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Fig.2. Control system using NC with GA
evolution.
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Fig.3. Structure of NC.
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Fig.4. Flow chart of NC evolution by GA.

dure of adapting NC is as follows. First we produce
some NCs, whose connecting. weights are chosen ini-
tially at random. Each NC has a genetic code which
is transformed from the connecting weights. The trans-
w 1) 65535
N, -
w are the genetic code and connecting weight, respec-
tively; the symbol [-] denotes a Gaussian function which
transforms decimals to integers; N, is a coefficient -that
indicates the range of w.

In the evaluation process, the control performances of
NCs are evaluated. The NC evaluation is performed as
follows. The trailer-truck system is set to an initial con-
figuration. The truck backs up using the NC, undergoing
many individual cycles of backing up, until it stops. The
final error of the trailer-truck system is recorded. Next,
we place the trailer-truck system in another initial con-
figuration and allow it to back up until it stops. Table
2 shows the initial configurations chosen by us. When
control trials starting from the nine configurations are
completed, the control performance of the NC is evalu-
ated. All of the NCs in the population are evaluated by
the same methods.

After the evaluation process, some pairs of NCs are
selected and produce new NCs by a two-point crossover
operation and a mutation operation. In a previous
study reported in ref. (10), we had confirmed that the
two-point crossover is superior than the single-point one
in these applications. Therefore, we use the two-point
Crossover.

After the NC production process, the new NCs go to
the evaluation process, and repeat the GA processes un-
til the best individual, with good control performance,

form equation g = [( ] is used, where g and

T C, 123455, 2003 &

985

Table 2. Initial configurations for NC evolution.
Pattern 0, %2, T4 z5
No. [deg] [m]

1 0 -

2 90 0.6
3 180

4 0

5 90 0.0
6 180

7 0

8 —90 —0.6
9 —180

is obtained.

4.2 Evaluation Function During the GA-based
training process of NCs, we use an error function F to
evaluate the control performance of NC, that is

— a5B0)2 4 gy (2! — wgh)?

P
E=3 {a(a
p=1

+aa(zy — 2PN + g5 (2 — 2820)%}, (8)
where mgnd is thé final \}alue of the state vector which

starts from any initial configuration of p. For the ref-
erence vector z™f, the suffix p is not attached, be-
cause the reference value is always zero in every trial.
q is the weight factor which adjusts the importance
of control variables. In this case, because all values
of z1, z3, x4 and z5 have the same range, we set as
g1 =93 = qa = g5 = 1. P denotes the number of initial
configurations, in this case P = 9.

In this study, we consider only the final states of the
truck system, as shown in error function E. Some-
times angular differences exceed the physical limitations
in control trials in the evaluation process of the GA.
However, the NCs that yield the limitation error are
eliminated during the GA processes. Setting only the
final states in the error function E causes many evolu-
tion failures. Therefore, we propose a modified GA that
improves the successful evolution of NCs.

4.3 Improvement of GA When the number of
connecting trailers increases and the physical angular
limitations are extremely small, the evolution of NCs
becomes difficult and the GA process cannot produce
better individuals. This time, all of the NCs in the
population are almost all the same individuals and it is
considered that diversity in the NCs population is lost.
In order to recover the diversity, we propose a modi-
fied GA which changes the number of offspring and the
mutation rate according to the similarity of NCs in the
current population. An index of the diversity in the NC
population is defined as the ratio of Ey/E,, where E,
is an average error of all NCs and Fj is an error of the
best individual of the NC population, respectively. If
the rate is larger than a certain value (let us call it P;),
we consider that convergence occurs. Then we increase
the number of offspring, which are generated from each
pair of coupled NCs, that is




where the symbol [-] denotes a Gaussian function. S is
a scale variable, which controls the total number of off-
spring generated from each pair of coupled NCs. Also,
the mutation rate is adapted as shown by the following
equation

Ey 0.5C

M=Cy+ (15*"* fﬂ) X

5. Simulation Results

5.1 Evolution Results Table 3 shows the prob-
abilities of successful evolution of classical GA (CGA),
modified GA1 (MGAL), modified GA2 (MGA2) and
modified GA3 (MGA3). Where, MGA1 uses the vary-
ing number of offspring and a constant mutation rate,
that is to say, M = Cy. MGA2 adopts both the vary-
ing number of offspring and the adaptive mutation rate.
And MGAS3 has a constant number of offspring N = Cy
and the adaptive mutation rate.

The number of NCs treated in the GA is set to 30, the
probability of crossover is 0.8. We set N, = 5, so that
the range of connecting weight w is [-5, 5]. Parameter
P; is set to 0.6 in this study. C'ny and Cy; are constant,
and are set to 2 and 0.01, respectively. Parameter C)y is
a number of offspring produced by a pair of parent NCs
in the classical GA. We consider that a pair of parent
NCs produces a pair of offspring NCs. Therefore, we set
Cn = 2. The other parameters are determined by trial
and error. At first, we produce some NCs at random.
Then we use these four'methods to evolve the NCs. Af-
ter 1000 generations, we stop the evolution process and
choose the best NC. Then, we examine the control per-
formance of the best NC. If the control error £ is less
than' a certain value (in this paper, we use 4 x 107%),
we consider that the evolution is successful. The thresh-
old value for F is determined with consideration of both
control performances and the generalization abilities of
NCs by trial and error. We consider that the successful
condition of squared error is less than 1 x 105 for each
variable and each trial. There are four variables and nine
trials in the error function E. Thus the successful condi-
tion is E < 4 x 10~%. We repeat this process 100 times,
then we compute the probabilities of successful evolu-
tion. From the Table 3, we can find out that the proba-
bilities of successful evolution decreased when the limit
condition of w, 1, £3 was more severe. MGA1 obtains a
better search performance than CGA. The performances
of evolution of MGA3 do not improve for CGA. In this
case, applying only an adaptive mutation rate does not
affect the evolution performances. We can observe that
MGA2 has the best search performance than the other

Table 3. Probabilities of successful evolution.
Angular MGA1 MGA2
limits | CGA (%] %] MGA3
u, 21,23 | [%] [§=3[S=6|5=3]5=6| [%]
[deg]
90 36 39 51 49 57 38
80 39 46 47 43 56 36
70 18 26 36 27 36 22
60 12 15 22 13 27 10
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Fig.6. Effect of modified GA.

three methods. We observe that MGAZ2 significantly im-
proves the evolution performance especially when S = 6.
We also discover that the modified GA is able to obtain
a better performance of evolution with the increase of

IEEJ Trans. EIS, Vol.123, No.5, 2003
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- 8. We determine the value of S with consideration of
both evolution efficiency and computing time.

Figure 5 shows an example of evolution results using
MGA2 (S = 6). It can be seen that the control exror of
the best NC decreased rapidly with the evolution of the
NC during the GA process.

Figure 6 shows the effect of adaptively changing the
number of offspring and the mutation rate. During the
initial stage of evolution, the NCs cannot control the
backward movement of the trailer-truck system. So all
the values of the evaluation function of NCs are equal to
the maximum error. In about 100 steps of the GA pro-
cess, the GA finds some NCs that can control the trailer-
truck system, then values of control errors of those NCs
become small and the ratio E; / E, decreases as the diver-
sity index decreases. Some steps later, the ratio Ey/E,
changes to increase. It is considered that the search
converges to a sub-optimal solution because the error of
NCs are not so small at that time. While Ey/FE, > P,
the adaptive changing of both the number of offspring
and the mutation rate is applied. As a result, the ratio
Ey/E, changes to decrease. Then the diversity of the
NC population is recovered and the GA process can be
continued to search for the best NC.

5.2 Control Results Figure 7 shows the control
trajectory of the truck system with two trailers when the
angular limitations are set to 60 degrees. In this case,
the initial angles are situated between training pattern
2 and pattern 3 in Table 2. From Figure 7, it can be
seen that the NC is able to control the trailer-truck sys-
tem successfully starting from the inside of the training
area. Figure 8 shows the steering angle u. It can be seen
that the angle u ranges from minus 60 degrees to plus
60 degrees. Figure 9 shows the control result when the
trailer-truck system starts from the untrained initial con-
figuration. The initial configuration of the trailer-truck
system is shown on the top left in the figure. Although
the truck with two trailers starts from an untrained ini-
tial position and angle, the NC can still control the back-

1.5

0.5 ¢

x5 [m]
o

End

gL
-1.5 -1 -0.5 0 0.5 1 ‘ 1.5
X6 [m]

Fig.7. Trajectory of trailer-truck system in simu-
lation (Initial angle is zo = 22 = x4 = 135 [deg]).
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Fig.8. Steering angle u (Initial angle is zo = =2
= x4 = 135 [deg]).

15 T T f T L

-1'51 5 -1 -0.5 0 0.5 1 1.5

:I?s[ﬂl]

Fig.9. Trajectory of trailer-truck system in simu-
lation (Initial position is (zs,z5) = (0.0,0.9)).
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Fig.10. Steering angle wu (Initial position is
(3:6,175) = (00,09))

ward movement of the trailer-truck system successfully.
Figure 10 shows the steering angle.

6. Experimental Results

As known, the GA process takes a long time to evolve
the NCs until obtaining the best individual. Thus, it is
unrealistic to train the NC on-line. It is obvious that
the NC obtained from off-line training inevitably con-
tains an error when it is applied in experiments. But
because of the generalization ability of neural networks
we think that we are able to achieve backward movement
control of a truck with two trailers even though the con-
trol performance might be worse than the results of the



Fig.11. Photograph of truck with two trailers.
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Fig.13. Trajectory of trailer-truck system in
experiment.

simulation. Figure 11 shows the truck system with two
trailers used in this experiment. The physical angular
limitations of u, x; and x3 are set to 60 [deg].

The experimental system of backward movement con-
trol is shown in Figure 12.

Figure 13 shows the control trajectory when the ini-
tial angles are zp = 91.62 [deg], zo = 91.17 [deg],
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Fig. 15. Steering angle v in experiment.

T4 87.03 [deg] and the initial position is set as
(6, %5) = (0.536,0.459). From the figure, it can be seen
that although the control result is not accurate enough,
it is still possible to achieve the desired control purpose.

Figure 14 shows the control results for angles z1, x3
and z4. Figure 15 shows the variation of the steering
angle u.

Figure 16 shows the photographs taken during the
control process by a CCD camera. We choose six typical
images from 122 successive images. From the figure, we
can see that the proposed control method can enable the
trailer-truck system to back up to the desired state.

7. Discussion

From Table 3, it is observed that NCs designed with a
GA easily perform the search for the optimal solutions
when the angular limitation of the trailer-truck system
is large. Large angles limit (e.g. 90 degrees) means that
we have more freedom to choose good NCs. However,
when the angular limitations are extremely small, the
successful evolution of NCs decreases, and the difficulty
and complexity of the controller design are increased.
In the classical GA which uses a constant number of off-
spring and constant mutation rate, many evolving NCs
are trapped in a sub-optimal solution. In the case of the
proposed modified GA, which uses an adaptive number
of offspring and mutation rate, it is possible to avoid
the sub-optimal solution and to reach more suitable so-
lutions.

From the simulation results, we can determine the
evolved NC that can successfully control the backward
movement of the trailer-truck system even if the trailer-
truck system is starting from some untrained positions

IEEJ Trans. EIS, Vol.123, No.5, 2003
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(a) Initial position (d) The 80th step

(c) The 60th step

(f) Final position

Fig. 16.
by NC.

Trailer-truck system movement controlled

and untrained initial angles. During the self-learning
process, the NC with GA not only grasps the knowl-
edge we want to train but also gains rich experience of
how to achieve the desired path from the passed trajec-
tory. Moreover, the generalization ability of the neural
network also makes the backward control possible.

From Figures 8, 10 and 15, we can observe that the
steering angle v oscillates within the angular limitations
in the results of both the simulation and experiment.
During the selection process in the GA, the inferior NCs
that exceed the angular limitations are eliminated and
superior NCs survive.

8. Conclusion

In this paper, we propose a method of backward move-
ment control for a truck system with two trailers using
neurocontrollers evolved by a genetic algorithm. When
the truck is connected to two or more trailers and the an-
gular limitations of the trailer-truck are extremely small,
the design method of neurocontrollers using GA would
not perform well. In order to search for the best neu-
rocontroller more quickly and effectively, we proposed a
modified GA which adaptively changes the number of
offspring and the mutation rate according to the diver-
sity of the NC population. The simulation results show
that the modified GA significantly improves the search
performance. We apply the control method not only to
computer simulations but also to experiments of a small-
scale real mechanism. The results of both show that the
control method is highly effective. In this paper, we dis-
cussed the backward movement of a truck system with

989

two trailers as a nonlinear control object. We assert
that the control method is suitable for solving problems
associated with nonlinear complex kinematic systems.
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