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Backpropagation, one of the most popular learning algorithms in multi-layered feedforward neural networks,
suffers from the drawback of slow convergence. Several modifications have been proposed to accelerate the
learning process using different techniques. In this paper, a new cost function expressed as exponential of
sum-squared or Log-likelihood is proposed. Weight update using this modification varies the learning rate
parameter dynamically during training as opposed to constant learning rate parameter used in standard
Backpropagation. Simulation results with different problems demonstrate significant improvement in the

learning speed of Backpropagation algorithm.
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1. Introduction

Since the resurgence of neural network, Backpropaga-
tion  has become one of the most widely used learning
algorithms to train multilayer feedforward network and
has demonstrated potential applications in character
recognition, image processing, intelligent control, pre-
diction etc. The algorithm uses gradient descent tech-
nique to adjust the connection weights between neurons.
One of the majdr drawbacks of Backpropagation is its
slow convergence. New applications of neural networks
in different areas like data mining, knowledge discov-
ery, and intelligent agents etc. demand faster -conver-
gence. Different modifications of standard Backpropa-
gation algorithm have been proposed to improve conver-
gence @~ Y Tawel @ proposed an adaptive neural net
by introducing the temperature of the sigmoid activation
function. To train the network both the weights and
temperatures are updated. Tariq® applied expected
values of the net input to hidden and output layer neu-
rons to determine the weight change. Holt  proposed
a Log-likelihood cost function as an alternate to sum-
squared cost function and reported faster convergence.
“Resilient Backpropagation” (Rprop) ® uses the sign of
the derivative of error surface with respect to weight
to indicate the direction of weight update. Leung et
al. ©® proposed an adaptive algorithm by combining the
adaptive neuron model ® and Kalman filter. Verma
adopted a method that uses an inverse transformation
for linearization of nonlinear output activation function,
and then employs direct solution method to determine
output layer weights and gradient descent to train hid-
den layer weights. Thus the weights in each layer are
determined separately. The learning algorithm requires
assigning codes to the hidden units and also identify-
ing the hidden unit with Minimum Bit Distance (MBD)
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by computing the similarity between the input vector
and the weight vector at the hidden layer after presen-
tation of each input during training. S.C. Ng et al. ®
proposed a generalized Backpropagation algorithm that
increases the back propagated error signals to improve
learning speed and avoid local minima. Sureerattanan et
al. @ proposed a method combining conjugate gradient
and Kalman filter. A'new logarithmic activate function
is proposed by Bilski *? in lieu of sigmoid activation
function commonly used in Backpropagation. Most of
the proposed modifications make the learning algorithm
too complex to be used by researchers who use neural
networks as an application tool. In this paper, a differ-
ent cost function is proposed to achieve accelerated con-
vergence: exponential of sum-squared or Log-likelihood
cost function. Simulations with different problems have
been carried out to investigate the learning characteris-
tic with this modification.

Section 2 briefly describes the weight update equations
with sum-squared and Log-likelihood cost function. Sec-
tion 3 shows the proposed modification. Section 4 and 5
present the simulation results and concluding remarks,
respectively.

2. Cost Function in Standard BP
Algorithm :

Backpropagation updates the weights iteratively to
map a set of input vectors (Xq,X2,...,X,) to a set of
corresponding output vectors (Y1,Yq,...,Y,). A Back-
propagation network is shown in Fig. 1. All the inter-
connecting weights between the layers are initialized to
small random values at the beginning. The input is pre-
sented to the network and multiplied by the weights.
All the weighted inputs to each unit of upper layer are
summed up, and produce output governed by the fol-
lowing equations.
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Fig.1. A Backpropagation network.
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where hp; and ypr are the outputs of hidden unit %
and output unit ‘4’, respectively. w’s are the connecting
weights between units and 6’s are the threshold of the
units, and f(.) is the sigmoid activation function.

The cost function to be minimized in standard Back-
propagation is the sum of squared error defined as

where t,, is the target output at unit %’ for pattern p’.
The error surface with respect to weights can have
various complex forms. Formulation of Backpropaga-
tion assumes that the reduction of each F, will reduce
the total error E. Therefore, the change in w for pattern
‘p’is given by
oL,
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which gives

pr?z = Nhpj (1 = hpj) Tpi

X Z (tpk - ypk> Ypk (1 - y’pk)ij T (6)
k

The term ypi(1 — yp) in (5) and (6) is a bell shaped
function having a maximum value of 0.25. When the
actual output ypr approaches to either of the extreme
values, namely 0 or 1, the value of this term diminishes.
This will produce very small back propagated error sig-
nal resulting in very small weight change. Thus, the
output can be maximally wrong without producing any
significant weight change. The algorithm may then be
trapped into local minima. Consequently, the learning
process and weight adjustment will be very slow or even
suppressed ®,

Holt  proposed a Log-likelihood (LL) cost function
as an alternate to sum of squared error which effectively
eliminates the term ypx (1 — ypr) in weight update equa-
tion. This cost function is defined as '

E=-3"3"{tpelngpn + (1—tp)In(l—gpn)}

The use of Log-likelihood cost function makes the
early stage of learning considerably faster . However,
convergence speed does not show significant improve-
ment at the final stage of learning.

3. Proposed Cost Function

If the learning rate parameter is made to vary as a
function of error measure during the learning process in-
stead of keeping fixed as in standard Backpropagation,
the overall learning speed can be expected to accelerate.
The following cost function is proposed to achieve faster
learning Y.
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- where E? is the total error and E‘; is the measure of
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error at the output layer for pattern ‘p’.
Accordingly the weight update in (5) changes to

(9)

An observation of (9) shows that the term e#P» needs
to be calculated each time an input is presented. Cal-
culation of this term involves calculation of E, for every
weight update which requires several multiplications and
exponential computations. The computational overload
using the proposed cost function can be reduced if the
term is replaced by e?¥, where E'is defined in (3). Then
this term needs to be calculated only once for each train-
ing cycle and can be used for presentation of each input.
The weight change becomes

Apwy; o —pef P (tok — Ypk)Ypr(L = Ypk) hpj -+

Apwi; = 18" (tor — Yo )Upk (1 — Yoo ) p;
= N f (tok = Yph)Ypr (L — Ypk)Fips - - -~ (10)

where

Neff = ﬁﬁ€BE7 and

pr,?i = Nefshpy (1 — hpj)Tp;

XY (tpk = Yok k(1 — Ypr)wfy <+ (11)
k

Comparison of (10) and (5) shows that the effective
learning rate in the proposed modification is 78ef~.
Thus this modification adapts the learning rate during
training as opposed to standard Backpropagation where
the learning rate is kept constant. In cases where the
actual output is very close to the extreme value (0 or
1) and is maximally wrong, standard. Backpropagation
algorithm may be trapped into local minima because
of very small change in weight. This modification effec-
tively increases the weight change in such cases and may
help to avoid trapping into local minima.

Modification proposed by Holt ® using Log-likelihood
cost function eliminates the term i (1 —ypx) in the out-
put layer weight update equation. Similarly weights in
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the proposed modification with Log-likelihood measure
of E are updated according to the following equations.

pr}(;j = ﬁeff(tpk — ypk)hpj ................ (12)
Dy}, =Tes thog (L=Pps)pi Y (tok—ypi)}; (13)
k
where
Ners = 0B,

E being the Log-likelihood cost function evaluated as in
(7)-
4, Simulation Results

In order to investigate the convergence behavior and
speed of the proposed modification, simulations are car-
ried out with different types of problems. Since no an-
-alytical techniques are available to study the learning
speed of Backpropagation algorithm, simulation with
different problems and comparison with standard Back-
propagation is the usually adopted means to evaluate the
effectiveness of a modification. In the present work, in-
vestigation has been done with three different problems.
The first one is the XOR problem which is treated as
a benchmark problem in the neural network literature.
The second is a character recognition problem chosen for
neural network’s suitability in character recognition ap-
plications. The third is a function approximation prob-
lem which uses analog values for both input and output.
Although the modifications use different cost functions
as a measure of error at the output layer, the same stop-
ping criterion was used for all algorithms in order to have
a comparison at equal and fair basis. In all cases learn-
ing was stopped when sum of squared error as computed
by (3) reduced to a predefined value.

4.1 XOR Problem A 2-2-1 network (two in-
puts, two hidden units and one output unit) network and
2-3-1 network were trained using both standard Back-
propagation and the proposed modification. Investiga-
tion was done with different values of 7 and 8 (in case of
~ modification only), and training was continued till sum
 of squared error measured at the output layer reduced to
0.0005. Total training cycles required for learning is also
dependent on the initial weights chosen. For this reason,
25 trials with different initial weights were carried out
and the average training cycles required for different val-
ues of n and @ are presented in Table 1.

Simulation results with XOR show that the use of the
proposed cost function greatly accelerates the conver-
gence speed with suitable value of 3. In case of XOR,
this suitable value of 8 lies within the range of 1.0~4.0.
Larger values of 8 tend to cause oscillation in the learn-
ing process. Learning behavior is illustrated in Fig. 2. It
shows that error starts to reduce drastically after it has
reached nearly 0.5 in both standard Backpropagation
and modification. But in case of modification, it starts
after 200 cycles whereas in standard Backpropagation
after 500 cycles. Similar trend is observed for other val-

ues of n and 3 also. Fig. 2 also shows how the effective
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Table 1. Comparison of learning speed in terms
of training epochs between standard BP and the
proposed modification to reduce sum of squared er-
ror as computed by (3) to 0.0005 in case of XOR
problem with a 2-2-1 network.

Learning | Standard | Proposed modification in standard BP
rate, 7 BP B=1.00 | f=2.00 | f=3.00 | B=4.00
0.20 28668 27922 13702 9080 6758
0.40 14312 13948 6858 4555 3503
0.60 9535 9297 4581 3091 2905
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Fig.2. Learning characteristic and the variation of

Neff With error in XOR problem in a 2-2-1 network
with n=0.4, =0.4.

learning rate 7.y varies during training. The adaptabil-

ity of learning rate with changing error results in faster

learning. Starting from higher value ey gradually re-

duces to lower value. This is quite justified because at

the latter stage of learning when error is of small value,
an inappropriately large step size can retard the learn-

ing process and may even lead to oscillation. By varying

the learning rate as required, the training is significantly

accelerated. ,

The problem was also studied with Log-likelihood cost
function proposed by Halt “ and the modification pro-
posed in (12) and (13). Although the algorithm “ min-
imizes Log-likelihood error defined by (7) and updates
the weights accordingly, a comparison of learning speed
was made on the basis of sum of squared error. Sim-
ulation results are shown in Table 2 for different val-
ues of n and B. Range of § that yields accelerated
convergence is found roughly within 1.0~2.0. Larger
values of 8 caused oscillation in learning. This range
of 8=1.0~2.0 is smaller than the comparison presented
earlier in Table 1. The reason is that, in this case, the
absence of the term ypx (1 —ypx) in (12) and (13) further
increases the effective step size. In-this case also, the
proposed modification shows significant acceleration in
convergence speed. :

4.2 Character Recognition Problem A Back-
propagation network was trained to learn ten numeric
digits (0~9). Each digit was an 8x8 pixel. Each black
pixel was represented by ‘1’ and white pixel by ‘0’. Tar-
get signal at the output layer was a locally represented
one, i.e., only one output unit at the output layer was



Table 2.

Comparison of training cycles required
© to learn XOR problem with a 2-2-1 network using
standard BP with Log-likelihood cost function and
the proposed modification.

Learning | Backpropa- Proposed modification using
rate, n | gation(LL) (12) and (13)
B=1.00 | B=1.50 | f=1.75 | f=2.00
0.20 1039 882 551 462 396
0.40 515 442 282 239 205
0.60 345 298 194 179 164
Table 3. Comparison of learning speed between

standard BP and the proposed modification to re-
duce sum of squared error to 0.001 to train ten nu-
meric digits (0~9) with a 64-5-10 network.

Learning | Standard | Proposed modification in standard BP
rate, 7 BP B=1.00 | B=1.50 | B=2.00 | B=2.50
0.20 8546 8011 5006 4320 3670
0.40 4285 3916 2520 1965 2915
0.60 2788 2676 1815 1683 2133
Table 4. Comparison of training cycles required

to realize character recognition problem with
a 64-5-10 network using standard BP with
Log-likelihood cost function and the proposed mod-

ification.
Learning | Backpropa- Proposed modification using
rate, 7 | gation(LL) (12) and (13)
B=1.00 | =1.25 | f=1.50 | 8=2.00
0.05 2602 2466 1856 1421 1252
0.10 1241 1230 1025 764 707
0.20 584 559 447 373 349

active and the rest were zero. The network had 64 inputs
and ten output units to represent ten categories. A 64-
5-10 and a 64-6-10 network were trained using standard
Backpropagation and the proposed modification. The
networks were trained with different values of n and 8.
For each set of n and (3, 25 trials were made. Simulation
results showing the average training cycles required to
reduce sum of squared error to 0.001 are shown in Table
3 and Fig. 3. The results show that learning is consider-
ably faster when modified Backpropagation is used with
the value of § within the range of 1.0~2.5. With larger
values of 3, oscillation occurs in the learning process.

As in the XOR problem, the character recognition
problem was also investigated using Log-likelihood cost
function and the modification suggested in (12) and (13).
Simulation results for different values of n and B are
summarized in Table 4. In this case also, for 4 roughly
within the range of 1.0~2.0, the modification accelerates
the convergence speed considerably.

4.3 Function Approximation The problem
chosen here is to approximate the sine function sin (x),
for -5.0 < = < 5.0 radian. A 1-6-1 and a 1-7-1 net-
work were trained with values of sin (x) taken at the
interval of 0.1 radian. In this case, the activation of the
output unit is linear. Input and target values are the
same. A total of 101 input-output values were trained
by the network. At sum-squared error of 0.00005, the
network approximated the sine function. Simulation re-
sult shows that accelerated convergence is achieved by
modified Backpropagation for values of 8 roughly within
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Fig.3. Learning characteristic and variation of

Ness during training in case of character recognition
problem with 5 hidden units and n=0.4, 8=0.2.

the range of 0.25~1.15 and n within 0.1~2.0. With
1n=0.20, standard Backpropagation shows severe oscilla-
tion in learning process whereas proposed modification
yields gradual decrement of error. Modification takes
only half of the number of training cycles required by
standard Backpropagation.

5. Conclusion

In this paper, a modification of cost function used
in standard and Log-likelihood Backpropagation algo-
rithms is proposed. The modification adapts the learn-
ing rate according to the measured error during training.
Simulation with different problems shows that the mod-
ification significantly accelerates the convergence speed.
The modification requires an additional parameter .
In our experiments significant improvement of learning
speed was achieved when the value of 8 was set higher
than 1.0. However, like 7 in standard Backpropagation,
suitable value of 3 is also problem specific. In applica-
tions users usually have to train a number of networks to
select the best one that yields the highest generalization
ability. A modification for accelerated learning like the
one presented here will be useful in this case.

(Manuscript received December 7, 2001, revised

September 17, 2002)
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