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One of the most important issues for power suppliers in the deregulated electric industry is how to bid into
the electricity auction market to satisfy their profit-maximizing goals. Based on the Q-Learning algorithm,
this paper presents a novel supplier bidding strategy to maximize supplier’s profit in the long run. In this
approach, the supplier bidding strategy is viewed as a kind of stochastic optimal control problem and each
supplier can learn from experience. A competitive day-ahead electricity auction market with hourly bids is
assumed here, where no supplier possesses the market power. The dynamics and the incomplete information
of the market are considered. The impacts of suppliers’ strategic bidding on the market price are analyzed
under uniform pricing rule and discriminatory pricing rule. Agent-based simulations are presented. The
simulation results show the feasibility of the proposed bidding strategy.
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1. Introduction

In the past decade, the electric utility industry in
many countries around the world has been undergoing
fundamental structural changes to introduce competi-
tion and enhance efficiency. The traditional vertically
integrated utility is deregulated to open up the system
to the market, in response to the pressures of privatiza-
tion and customer demands. Electricity and services can
be sold and purchased as a commodity through differ-
ent market structures. Under this deregulated and com-
petitive environment, economics and profitability have
become the major concern of every market participant,
and each of them will act in his/her own self-interest in
this new environment.

Among the proposed market structures, the electricity
auction market has been widely experienced and imple-

. mented in different countries with different protocols.

Market participants — electricity suppliers, and distri-
bution companies — are required to submit their sealed
bids to the auction market to compete for power energy.
All participants winning the auction will be paid based
on the rules agreed upon by the participants. Thus, the

_ bidding strategy, which is essential for a successful busi-

ness in this auction market, is becoming one of the most
important issues in deregulated electric industry. Mar-
ket participants can greatly improve their benefits by
strategic bidding,.
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On the other hand, the current electricity market
models, which are being implemented in many coun-
tries, are far from perfect and mature, and therefore,
are still in the evolving process. Many issues that are
being raised need to be solved, such as issues concerning
market designing, system security and congestion man-
agement. California’s electricity crisis has presented us
these complex issues and challenges. One of lessons from
California’s electricity crisis is that market design and
rules should assure markets workably competitive, and
making comprehensive simulations and studies is nec-
essary before critical decisions are made. It is believed
that, developing profitable strategies for individual firms
under different market designs can provide a deep insight
into the complex new electricity markets and identify
how rules can be altered to improve the performance of
the market @,

Developing bidding strategies for competitive suppli-
ers has been studied by many researchers in recent years.
Game theory ® is naturally the first choice to deal with
this issue and lots of works have been done using this
traditional theory. In Ref. (3), a Nash game approach
is used to study the pricing strategy in the deregu-
lated power marketplace, where each participant has
incomplete information about others. A method using
Cournot non-cooperative game theory to determine the
optimal supply quantity for each power producer in an
oligopoly electricity market is presented in Ref. (4). The
results show that the estimation accuracy of prodiiction
cost functions of rivals plays an important role in this
market. Different electricity market rules and their ef-
fects on bidding behaviors in a non-congestion grid are
analyzed in Ref. (5). The authors conclude that gener-
ators can take advantage of congestion in their strategic
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bidding behavior.

But game theory is not the only solution to this prob-
lem. In fact, due to the complexity, dynamics and uncer-
tainty of the restructured electricity market, evolution-
ary computation algorithms and reinforcement learning
are receiving increasing attention recently and becoming
major tools in solving this problem. A genetic algorithm
is developed in Ref. (6) to evolve the bidding strategies
of participants in a double auction market. Markov De-
cision Process is used to optimize the bidding decisions
to maximize the expected reward over a planning hori-
zon in Ref. (7). The optimal bidding problem is modeled
as a stochastic optimization problem in Ref. (8), and, a
Monte Carlo approach based method and an optimiza-
tion based method are developed to solve this problem.
An agent-based simulation model of a wholesale electric
market is developed in Ref. (15) to provide a source for
strategic insight into the diverse aspects of the emerg-
ing electricity marketplace, and Q-Learning algorithm is
used to generate the price offers for generation compa-
nies in a bilateral contracts market for electricity.

We assume that with the development and wide use
of new power generation technology, the number of In-
dependent Power Producers (IPPs) requesting intercon-
nection to various locations has largely increased. These
IPPs participate in a day-ahead electricity auction mar-
ket, competing against each other to supply electric-
ity. The bidding strategy for these IPPs is viewed as
one kind of stochastic optimal control problem known
as the Markovian Decision Problem (MDP) ®®  and Q-
Learning algorithm ®®~9 is used to develop an opti-
mal bidding strategy for suppliers to satisfy their profit-
maximizing goals in a long term, rather than in a par-
ticular round of auction.

It is assumed that no supplier possesses the market
power, which can be used to manipulate the market price
to satisfy his/her own interest. Each market participant
in this market is assumed to have only information on
his/her own cost and the publicly available information
of the market, but lack information on other partici-
pants. The market participants are also assumed to be
so many that it is very difficult for each supplier to es-
timate other participants’ bidding behaviors. But, each
participant is designed to have the ability to use the
public information of the market and to learn from ex-
perience,

In this paper, we also attempt to provide some views
on two controversial issues in the evolving electricity auc-
tion market:

® Which market pricing rule is better for electricity

auction market, the uniform pricing rule or the dis-
criminatory pricing Tule? Although the uniform
_pricing rule is theoretically superior to the discrim-
inatory pricing rule and the majority of pricing rule
adopted in electricity auction markets now is the
uniform pricing rule, this issue is still an open ques-

tion. In fact, the new electricity trading arrange-

ment (NETA) of U.K. electricity market ® has re-
placed the mandatory daily uniform price auction
with a discriminatory price auction (a switch from
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Fig.1. The relationship of the ICA and suppliers.

the uniform to discriminatory pricing rule).

® Should bidders with the lowest costs of production
bid their true costs under the uniform pricing rule?
It is widely believed that, if all generators were to
be paid on market clearing price under the uniform
pricing rule, the dominant bidding strategy of.a bid-
der, especially of bidder with the lowest costs of
production, is to bid the true cost. But, the au-
thor concludes in Ref. (10) that, bidders have no
incentives to bid their true costs under the uniform
pricing rule; instead, they will likely mask their bids
above their costs of production.

This paper is organized as follows: Section 2 describes
the model of a day-ahead electricity auction market.
Section 3 presents the Q-Learning algorithm and the
proposed supplier bidding strategy. Section 4 shows the
simulation results, which is based on a multi-agent sim-
ulation approach. Section 5 gives the conclusions.

2. A Day-ahead Electricity Auction Market

A day-ahead electricity auction market with no
demand-side bidding is assumed here. In this day-ahead
auction market, all suppliers wishing to sell power to-
morrow must submit their bids today to an Indepen-
dent Contract Administrator (ICA)*", who will clear
the market, determine which supplier should be used to
meet the forecasted load, and check if the security and
reliability constraints of the power system are satisfied.
The relationship of the ICA and suppliers is shown in
Fig.1.

Everyday, suppliers submit their 24 separate hourly
bids with price ($/MWh) and quantity (MW), at which
they are willing to sell, to compete for the power loads
over the 24-hour of the next day, which are forecasted by
the ICA. The bids from suppliers are ranked by the ICA
from the cheapest to the most expensive to construct
a supply curve on an hourly basis. The ICA will then
select the cheapest supplier until the load of each hour
of the next day is met.

At the end of every trading day, each supplier is noti-
fied of his hourly dispatched power (MWh), which is the
quantity called into operation during the next day, and
the hourly market price (§/MWh), which is assumed to
be the only publicly available information to each sup-
plier in this paper.

The market winners are paid based on the rules agreed
by all market participants. Currently, there are two ma-



jor pricing rules used in the deregulated electricity auc-
tion markets around the world.

¢ Uniform pricing rule: all winners are paid at the

market clearing price (MCP), which is the highest
bid price of winners (“pay marginal”).

® Discriminatory pricing rule: each winner is paid at

his own bid price (“pay as bid”).

It is assumed that the publicly available hourly mar-
ket price is the hourly market clearing price under uni-
form price rule, or the hourly sales-weighted average bid
prices of all suppliers under discriminatory pricing rule.

In general, increasing the amount of information avail-
able to all bidders could increase the efficiency of the
auction market. Therefore, it is better for the Indepen-
dent Contract Administration (ICA) to publish other
information, such as the maximum and minimum bid
prices of everyday, market power demand and weather
conditions, as well as the hourly market price. But, the
problem is that increasing the amount of publicly avail-
able information could at the same time lead to the risk
of making the unexpectedly collusive behavior between
bidders easier to implement. Therefore, we assume in
this paper that the hourly market price is the only pub-
licly available information to all bidders in an attempt
to reduce the potentiality of collusive behavior between
bidders.

3. Developing Bidding Strategy Through
Q-Learning Algorithm

Q-Learning (QL) algorithm is a reinforcement learn-
ing algorithm *® proposed by Watkins for solving the
Markovian Decision Problems with incomplete informa-
tion. It does not need an explicit model of its environ-
ment and can be used on-line to find the optimal strategy
through experience obtained from the direct interaction
with its environment. These features make it well suit-
able for dealing with the decision-making problems in
the repeated games against unknown opponents, such
as the bidding strategy in the electricity auction mar-
ket. Based on the Q-Learning algorithm, this section
provides an optimal bidding strategy for suppliers to
maximize their profits in the day-ahead electricity, auc-
tion market.

3.1 Q-Learning Algorithm Assume that a
learning agent interacts with its environment at each
of a sequence of discrete time steps, ¢ = 0,1,2,..., as
shown in Fig.2. And let S = {si,s2,83,...,5,} be
the finite set of possible states of the environment and
A ={a1, a9, as, ...,a, } be the finite set of admissible ac-
tions the agent can take. At each time step ¢, the agent

- senses the current state s; = s € S of its environment,
and on that basis selects an action a; = a € A. As
a result of its action, the agent receives an immediate
reward ry, and the env1ronment s state changes to-the
new state s¢p1 = s € S with a transition probability
P,y (a).

The objective of the agent is to find an optimal policy
7*(s) € A for each state s to maximize the total amount
of reward it receives over the long run. Q-Learning algo-
rithm provides an efficient on-line approach to determine
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Fig.2. An illustration of agent’s interaction with
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the optimal policy by estimating the optimal Q-values
Q*(s, a) for pairs of states and admissible actions.
The Bellman optimality equation for Q*(s,a) is given

as follows:
Q*(s,a) = ZP

where R?, = ry is the immediate reward from taking
actlon a 1n the state s and transitioning from state s to
sl, a is the admissible action in the new state s and
v (0 < v < 1) is a scaling factor used to dlscount the
future rewards. If v is small, it means that the expected
future rewards count for less. |
Any policy selecting actions that are greedy with re-
spect to the optimal Q-values is an optimal policy @.
Thus, the optimal policy is
T™(s) = arg max(Q"(s,a)) «+o-iieeeenn
Without knowing the P, (a), the Q-Learning algo-
rithm can find the Q*(s,a) in a recursive manner by
using the available information s¢, as, s;y1 and 7. The
update rule for Q-Learning is

Qi(s,a) + aAQy(s, a)
if s=3s; and a=a;
otherwise

Qt-l-l(s; a) =

where o is the learning rate, Q4 (s,
the Q-value for state-action pair (s,
respectively, and

a) and Q;41(s,a) are
a) at time ¢t and ¢4 1,

)]} — Qu(s, a)

AQ(s, a)={re + ymax[Qy(se+1,

The learning rate @ (0 < a < 1) reflects the degree
to which estimated Q-values are updated by new data.
High values imply more rapid updates, with a risk of
instability ®.

If the Q-value for each admissible state-action pair
(s,a) is visited infinitely often, and the learning rate a
decreases over the time step ¢ in a suitable way, then
as t — 00, Q¢(s,a) converges with probability one to
Q* (s, a) for all admissible pairs (s, a).
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3.2 QL-based Supplier Bidding Strategy In
the repeated day-ahead electricity auction market, each
supplier will attempt to maximize his/her profit in a long
run and to reduce risks. The need to maximize profit
and manage risks at the same time is becoming a dom-
inant industry problem @®. Based on the Q-Learning
algorithm, a bidding strategy for suppliers is developed
to balance the tradeoff between the expected profit and
risks. To simplify the analysis, it is assumed that each
supplier bids his/her maximum generation capacity as
the bidding quantity at each hour of every trading day.
Therefore, the bidding strategy results in a bidding price
decision-making problem.

As described earlier, it is assumed that each supplier
has information only on his/her own cost and the public
information of hourly market price, but lacks of informa-

! tion on the rivals. Thus, the bidding process is a stochas-
tic process. During this stochastic bidding process, each
supplier will attempt to meet his/her objectives of:

¢ increasing his/her profit from day to day,

e satisfying the target utilization rate on his/her gen-

erator everyday,
as described in Ref. (12). The target utilization rate
is defined as the ratio between the expected dispatched
power (MWh) and the maximum power output (MWh)
of generator everyday. ‘

To apply the Q-Learning algorithm in developing the
bidding strategy, it is necessary to define the states, ac-
tions, and rewards first. ‘

1) States: The state of environment is represented by
the market price, and has 20 different levels which is
equally distributed between 0 §/MWh and the market
ceiling price that is specified to 20 $/MWh here. The
market ceiling price is a capped price which is designed
to prevent unacceptable market outcomes, as did in the
California’s electricity market.

As shown in Fig.3, if the market price is within the in-
terval of (19,20] $/MWh, then the environment’s state
is in state 19. It should be noted that the state of envi-
ronment should include other market information such
as predict power load of the next trading day, but these
are not taken into account here for simplicity.

2) Actions: Each rational supplier will generate bid-
ding price between his/her unit production cost and the
market ceiling price. Therefore, it is assumed here that
each supplier’s admissible actions are represented by 20
intervals which are equally distributed between his/her
unit production cost and the market ceiling price, as
shown in Fig.3. Applying an action g is to randomly
generate a bidding price in the ath interval.

3) Rewards: Taking into account the requirement of
utilization rate on supplier’s generator, it is assumed
here that it is required a constant target utilization rate
on generator for each hour of everyday, for simplicity.
Considering the target utilization rate for that hour, the
reward 7; 1,(8, a) of supplier i from his bids at hour / un-
der action a and state s is calculated based on the follow-
ing formula, which can be viewed as a penalty function:
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Fig.3. The definition of states and agent’s actions.

Table 1. An example of the Q-values of state -
action pairs.
action | action | action action
11 12 13 16
state 15 512 299 313 ~390
state 16 395 543 489 294
state 17 543 563 608 231
state 18 489 561 600 718
utly(h)

rin(s,a) = (i, h) * ( il Y
where 7(i, h) is the payment of supplier ¢ received for
winning at hour h minus the costs of production, utl; is
the target utilization rate, utl,(h) is the actual utiliza-
tion rate at hour h, and n (n =0,1,2,...) is a constant
which shows how strictly a supplier tries to satisfy the
requirement of utilization rate. If n is large, it implies
that the supplier is strict in satisfying the requirement
of utilization rate and can be thought to be of risk averse
type. If n = 0, there is no penalty effect on the reward,
and the supplier can be viewed to be opportunistic.

3.3 Algorithm Implementation  We assume
that whether the operation status of generator is on or
off at any hour, it does not affect the operation status
of generator at the next hour. Therefore, the whole day
profit-maximizing problem can be decomposed into an
hourly profit-maximizing problem. Based on this con-
sideration, in this paper, Q-values for state-action pairs
at each hour of a supplier are stored in a lookup table.
An example of Q-values for state-action pairs is given in
Table 1, where the Q-values in bold style are the maxi-
mum values under each state and the actions associated
with them are the optimal actions a supplier would take
most likely.

The steps of suppliers’ learning and bidding are given
as follows: )

1) Step 1: State identification. At the beginning of
the current trading day, each supplier uses the publicly
available 24 separate hourly market prices on the pre-
vious trading day as the 24 hourly states of the current
trading day. '

2) Step 2: Action selection. After having obtained the
24 hourly states, each supplier inquires his/her Q-value
lookup tables to select the optimal action with maximum
Q-value in each state, and generates the bidding price



Table 2. The maximum capacities (MC), unit pro-
duction costs (UPC) and startup cost of 10 agents
in two supply cases. ‘

agent UPC MC | startup | number of
type | (§/MWh) | (MW) | cost (§) | agents
supply I 8.0 50 40 4
case IT 10.0 50 40 3
one I11 12.0 60 40 3
supply I 8.0 50 40 6
case I 10.0 50 40 2
two 111 12.0 60 40 2

at each hour according to the definition of an action.
To balance the exploration and exploitation of suppli-
ers’ learning from the dynamic electricity auction mar-
ket, e-greedy method @® is introduced to the Ql-based
supplier bidding strategy. That is, during the action
selection process, the supplier selects most of the time
an action a with maximum @(s,a) in the state s; but,
with a small probability ¢, he also randomly selects an
action a from all the admissible actions in the state s, in-
dependently of the Q-values Q(s, a), to explore the new
optimal bidding strategy in the dynamically competitive
market.
" 3) Step 3: Q-value update. At the end of the current
trading day, after being notified of the dispatched power
and the market price at each hour, each supplier cal-
culates the rewards according to (5), and updates the
Q-values of each hour based on the available rewards
and next states which are the hourly market prices of
current trading day, according to (3), (4).

4. Simulation Results

An agent-based simulation method is developed here
to test the bidding strategy proposed in the above sec-
tion. The application of agent-based simulation method
to deal with issues in the deregulated electricity indus-
try is a newly promising research area 4 @9 In this pa-
per, it is assumed that there are two supply cases and in
each case there are 10 adaptive agents, each of them rep-
resenting a supplier who participates in the day-ahead
electricity auction market and has the ability to explore
and exploit the optimal bidding strategy to meet his/her
profit-maximizing goal in the competitive environment.
Table 2 gives the maximum generation capacities, unit
production costs and startup costs of these agents. As
can be seen from the capacity levels of all agents, no
supplier possesses the market power since no agent has
the dominant market share.

Many simulation cases have been carried out. In each
case, to simulate that all initial Q-values of each agent at
each hour are obtained from a long period of trading ex-
perience, the simulation process is designed to run first
for 10,000 trading days to obtain these initial Q-values
of agents. The discount factor v of all agents is set to
0.1. The learning rate « is designed to be state-action
dependent varying with time, as used in Ref. (16). That
is, the learning rate ogp(s,a) of each agent at hour h
on the trading day d is inversely proportional to the vis-
ited number B4 n(s,a) of state-action pair (s,a) up to
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Fig.4. The forecasted power demand in winter
and spring by the ICA.

the present trading day, as follows:

! e (6)

ﬂd,f;(é’? a)

After this learning process, the learned initial Q-values
are used to develop optimal bidding strategy proposed
in the Section 3. ‘

4.1 Simulation Case 1 To firstly show the fea-
sibility of the proposed bidding strategy, its impacts
on the market price are investigated under discrimi-
natory pricing rule. With the learned Q-values under
winter power demand situation, the simulation process
are carried out for 2,000 trading days with the strategic

ad’h(s, a) =

'bidding of agents in supply case one. The forecasted
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power demand during the first 1,000 trading days is
the winter power demand, and is changed to the spring
power demand during the second 1,000 trading days,
as shown in Fig.4. The parameters v = 0.1, a = 0.5,
target utilization rate = 0.75, ¢ = 0.1 and n = 1 are
the same for all agents. '

It should be pointed out that different parameters de-
fine different individual characters of agents — rigk averse
or opportunistic, non-greedy or greedy. But the impacts
of individual character of each agent on his/her rewards
and actual generator utilization rate are not investigated
in this paper for concise reason.

Fig.5 shows the average hourly market price during
the winter and spring. As shown in this figure, the
intense competition among agents leads to the lowest
market prices during the off-peak load periods such as
at hour 2, 3 and so on, where the electricity supply is
much bigger than the power demand. However, during
the peak load periods such as at hour 16, 17 and 18 in
winter, at which there are shortages of the power sup-
ply, the market prices are very close to the market ceiling
price due to the agents’ learning to fully take advantage
of the market opportunity. These facts show that the
proposed QL-based bidding strategy is successful in gen-
erating optimal bidding prices at different hours and in
different seasons for agents in the day-ahead electricity
auction market.

The agents’ learning can be seen in Fig.6, which shows
the market prices at hour 17 during the 2,000 trading
days. Power load changes from 550 MW to 506 MW
at hour 17 on the trétlding day 1,000, when the season

IEEJ Trans. EIS, Vol.123, No.6, 2003



A Supplier Bidding Strategy Through Q-Learning Algorithm

25
Winter =——
Spring - *
g 20
~ 16}
"
g
a
45 10
)
8
g .|
o
[ 5 10 15 20 256
hour
Fig.5. The average hourly market price of every-

day under discriminatory pricing rule.

market price at hour 17 ==

= = = Y] w
- @ @ S N =

market price: ($/MWh)

=
5]

10 N N
0 1000 1200 1400 1600 1800 2000

trading day

200 400 €600 800

Fig.6. The everyday market price at hour 17 dur-
ing the 2,000 trading days.

changes from winter to spring. As can be seen from
_ this figure, when the power load changes, the market
price changes accordingly as adaptive agents interact
with each other and learn from experience to develop
their optimal bidding prices. It should be noted that,
due to the slow convergence of Q-Learning algorithm,
the market prices at hour 17 take a few days to reach
a new dynamic equilibrium. But it is believed that the
effect of this drawback can be reduced to some degree
when each agent initializes his/her Q-values on a sea-
sonal basis, takes actions and updates Q-values accord-
ingly. .

4.2 Simulation Case 2 To further show its fea-
sibility, the proposed bidding strategy is compared with
another simple bidding strategy for suppliers, which is
a simplified version of the “naive reinforcement learning
algorithm” used in Ref. (12). The simple bidding strat-
egy can be summarized as follows: if the supplier fails to
achieve his/her target utilization rate on the generator
at certain hour on the previous trading day, then sub-
tracts a random percentage from the previous bidding
price; otherwise, adds a random percentage to previous
bidding price to create the next day’s bidding price at
that hour. The random percentage is generated from a
uniform distribution with a range +10% and a mean of
0.

In this simulation case, among the 10 agents in the
supply case I, there are two of agent type I, II and III

using the proposed Q-Learning based bidding strategy,-

respectively. These agents have the same parameters as
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Table 3. The average daily rewards and actual
generator utilization rate of each agent type in sup-
ply case one using different bidding strategy in the
auction market.

agent | proposed strategy simple strategy
type | Rewards (3) | Rate | Rewards (§) | Rate
I 9679 0.97 9439 0.81
1I 7574 0.97 7459 0.81
111 6458 0.79 6205 0.74
Table 4. Impact of startup cost on their average

daily rewards, bid prices and actual generator uti-
lization rates as agents of type III are considered.

startup | rewards | bid prices | actual generator
cost ($) ($) ($/MWh) | utilization rates
0 5420 16.7 0.68
40 5340 16.7 0.67
80 5267 16.7 0.67
120 5151 16.7 0.67
160 5067 16.7 0.67

those described above. All the others of each agent type
use the simple bidding strategy. The auction market
adopts the discriminatory pricing rule and has the fore-
casted winter power load. Simulation results are given
in Table 3. As shown in this table, the proposed bidding
strategy led to better rewards and actual generator uti-
lization rate for suppliers from the auction market than
the simple bidding strategy did.

43 Simulation Case 3  The impacts of startup
cost on average daily rewards, bid price and actual gen-
erator utilization rate are studied in this case.

10 agents in supply case one with the same param-
eters used in simulation case 1 compete against each
other under the discriminatory pricing rule and winter
power demand. Table 4 shows the impact of startup
costs as agents of type III are considered. According
to this table, with an increase in startup cost, the aver-
age daily rewards decrease. However, the average daily
bid prices and actual generator utilization rates of these
agents remain unchanged (or little change). This can
be explained that during the competition, the fixed Q-
Learning parameters of each agent means the bidding
strategy of each agent remains unchanged, therefore,
with all bidding strategies fixed, each agent will bid
prices in a certain range at each hour and the market
will reach a dynamic equilibrium in a long term.

4.4 Simulation Case 4 To investigate which
market pricing rule is better for the auction market used
in this paper, the average hourly market prices under
two major pricing rules are compared. The 10 agents in
supply case one are allowed to compete for 1,000 trading
days with the forecasted winter power demand. Under
the discriminatory pricing rule, all 10 agents bid strate-
gically. However, under the uniform pricing rule, agents
(type I) with the lowest costs bid their true costs every-
day while others bid strategically. Q-Learning parame-
ters of those bidding strategically are the same as those
used above.

Fig.7 shows the comparison result. As can be seen
from this figure, the market price under uniform pric-
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Table 5. The average daily rewards and actual
generator utilization rate of each agent type in two
supply cases when agents of type I bid strategically
or bid their true costs.

agent bid true cost bid strategically
type | Rewards ($) | Rate | Rewards ($) | Rate
supply I 9863 1.0 9726 0.97
case 1T 7199 0.94 7316 0.94
one 111 5694 0.63 5768 0.67
supply 1 9769 1.0. 9853 0.96
case I 7042 0.80 7348 0.86
two 1T - 6067 0.60 6232 0.64

ing rule is higher than that under discriminatory pricing
rule. This means that, in a competitive auction market
where no supplier possesses the market power, uniform
pricing rule could bring more profits to electricity sup-
pliers, and that consumers could have to pay more un-
der this market pricing rule. It also can be seen from
this figure that, no matter which market pricing rule is
adopted, market prices will decrease when competition

degree is high and will rise close to the market ceiling -

price when competition degree is low.

4.5 Simulation Case 5 In this case, whether or
not it is better for agents (type I) with the lowest costs to
bid their true costs under uniform pricing rule is investi-
gated with the forecasted winter power demand. Supply
case one and supply case two are used here. Agents of
type II and III all bid strategically and have the same
Q-Learning parameters as those used previously, so do
agents of type I when they bid strategically.

The average daily rewards and actual generator uti-
lization rate of each agent type are given in Table.5.
From this table, it is better for agents of type I to bid
their true costs under uniform pricing rule in supply
case one, where any type of agents has not the domi-
nant market share. Bidding their true costs in this case
will eliminate risks and guarantee that their generators
will be always called into operation. When they try to
bid more than their true costs, they would face risks of
their bids not being accepted and suffer profit decreases
accordingly. At the same time, profit decreases by the
agents of type I would lead to profit increases for other
types of agents in the same competitive market, as can
be seen from Table 5. However, simulation results also
show that, in the supply case two where agents of type
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I have the dominant market share, bidding strategically
could bring them more profits than bidding their true
costs, although their actual generator utilization rates
decrease to some degree. Moreover, all other agents in
this supply case will benefit from the strategic bidding
behavior of agents of type 1.

5. Conclusions

Based on the Q-Learning algorithm, an optimal bid-
ding strategy was proposed in this paper to provide sup-
pliers an optimal approach to maximize their profits in
the long run from the day-ahead electricity auction mar-
ket. Each supplier with the proposed bidding strategy
can learn from experience and make full use of the public
information of the market. A penalty function was in-
troduced to the calculation of the reward from supplier’s
bids. The impacts of the proposed bidding strategy on
the market price were analyzed. The proposed QL-based
bidding strategy was compared with a simple bidding
strategy. Simulation results have shown the feasibility
of this QL-based supplier bidding strategy.

In this paper, it has been shown that uniform pricing
rule could lead to a higher market price than discrimi-
natory rule. Although the purpose of this paper is not
intended to deal with the market design, it still provided
a deep insight into the complex new electricity markets.

Also, it has been shown that whether or not agents
with the lowest costs should bid their true costs depends
on the market supply condition. When agents with the
lowest costs have a dominant market share, they could
benefit from their strategic bidding behaviors.

We realize that the proposed bidding strategy is still
some kind of simple at the current stage and a practical
strategy should take many constraints and conditions
into consideration, such as minimum output, ramp rate
of generators. More work will be done in the future to
make it a practical method.

(Manuscript received Aug. 23, 2002,

revised Dec. 12, 2002)

References

- (1) Harry Singh: IEEE Tutorial on Game Theory Application
in Electric Power Markets, IEEE Power Engineering Society,
Winter Meeting, New York (1999)

D.Fudenberg and J.Tirole: Game Theory, Cambridge, Mas-
sachusetts: The MIT Press (1991)

R.W.Ferrero, J.F. Rivera, and S.M.Shahidehpour: “Applica-
tion of games with incomplete information for pricing elec-
tricity in deregulated power pools”, IEEE Trans. on Power
Syst., Vol.13, No.1, pp.184-189, Feb. (1998)

F.S5.Wen, and A.K.David: “Oligopoly Electricity Market Pro-
duction under Incomplete Information”, IEEE Power Engi-
neer Review, pp.58-61, April (2001)

K.Seeley, J.Lawarree, and C.C.Liu: “Analysis of Electric-
ity Market Rules and Their Effects on Strategic Behavior
in a Noncongestive Grid”, IEEE Trans. on Power Systems,
Vol.15, No.1, pp.157-162, Feb. (2000)

C.W.Richter,Jr and G.B.Sheble: “Genetic Algorithm Evolu-
tion of Utility Bidding Strategies for the Competitive Market-
place”, IEEE Trans. on Power Systems, Vol.13, No.1, pp.256-
261, Feb. (1998) .
H.L.Song, C.C.Liu, J.Lawarree, and R.W.Dahlgren: “Opti-
mal Electricity Supply Bidding by Markov Decision Process”,

(2)
(3)

(4)

()

(6)

(7)

IEEJ Trans. EIS, Vol.123, No.6, 2003



A Supplier Bidding Strategy Through Q-Learning Algorithm

(8)

(9)

(10)

(1

(12)

(13)

(14)

(15)

(16)

7)
(18)

(19)

(20)

IEEE Trans. on Power Systems, Vol.15, No.2, pp.618-624,
May (2000)

F.8.Wen and A.K.David: “Optimal Bidding Strategies and
Modeling of Imperfect Information Among Competitive Gen-
erators”, IEEE Trans. on Power Systems, Vol.16, No.1,
pp.15-21, Feb. (2001)

Derek W.Bunn and Fernando S.Oliveria: “Agent-Based Sim-
ulation — An Application to the New Electricity Trading Ar-
rangements of England and Wales”, IEEE Trans. on Evolu-
tionary Computation, Vol.5, No.5, Oct. (2001)

S.Y.Hao: “A Study of Basic Bidding Strategy in Clearing Pric-
ing Auctions”, IEEE Trans. on Power Systems, Vol.15, No 3,
pp.975-980, Aug. (2000)

SEPIA’s web site, http://www.htc.honeywell.com/projects/
sepia

J. Bower and D. Bunn: “Experimental analysis of the effi-
ciency of uniform-price versus discriminatory auctions in the
England and Wales electricity market”, J. Economic Dynam-
ics and Control, Vol.25, pp.561-592, March 2001.

M.Ilic, and P.Skantze: “Electric Power Systems Operation by
Decision-and Control”, IEEE Control Syst. Magazine, Vol.20,
No.4, pp.25-39, Aug. (2000)

C.C.Liu, J.H.Jung, G.T.Heydt V.Vittal, and A.G.Phadke:
“The Strategic Power Infrastructure Defense (SPID) System”,
IEEE Control Systems Magazine, Vol.20, No.4, pp.40-52,
Aug. (2000)

S.A.Harp, A.Brignone, B.F.Wollenberg, and T.Samad:
“SEPTA: A Simulator for Electric Power Industry Agents”,
IEEE Control Syst. Magazine, Vol.20, No.4, pp.53-69, Aug.
(2000)

Junhong Nie and Simon Haykin: “A Dynamic Channel As-
signment Policy Through Q-Learning”, IEEE Trans. Neural
Networks, Vol. 10, No. 6, pp. 1443-1455, Nov. (1999)

Arthur R.Bergen, Vijay Vittal: Power Systems Analysis, 2nd
ed., Prentice-Hall (2000) :

Richard 8. Sutton and Andrew G. Barto: Reinforcement
Learning: An Introduction, Cambridge, MA:MIT Press (1998)
A. G. Barto, S. J. Bradtke, and S. P. Singh: “Learning to
act using real-time dynamic programming”, Artificial Intelli-
gence, Vol. 72, pp. 81-138 (1995)

C. J. C. H. Watkins, Learning from Delayed Rewards, PhD
thesis, Cambridge University, Cambrldge England (1989)

Gaofeng Xiong (Student Member)

+I

forcement learning. He is a student member of thé IEE of Japan,
and the IEEE.

Tomonori Hashiyama (Member)

e,

o

Shigeru Okuma (Member)

and the IEEE.

received his BS, MS de-
grees in Electrical Engineering from Hunan
University, P.R.China, in 1992 and 1995, re-
spectively. He was a faculty member at Col-
lege of Mechanical and Automotive Engineer-
ing, Hunan University, from 1995 to 1999.
He is currently a Ph.D. student at Electrical
Engineering, Nagoya University, Japan. His
research interests include power system eco-
nomics, evolutionary computation, and rein-

received his Ph.D degree
in Electrical Engineering from Nagoya Uni-
versity, Japan, in 1996. He is currently an
associate professor at the Institute of Natu-
ral Sciences, Nagoya City University. His re-
search interest include evolutionary computa-
tion, optimization, and intelligent system ap-
plications. He is a member of the IEE of
Japan, and the IEEE.

received his M.E. degree in sys-
tems engineering from Case Western Reserve
University, OH, U.S.A, and his Ph.D. degree
in Electrical Engineering from Nagoya Univer-
sity, Japan, in 1974 and 1978, respectively.
Since 1990, he has been a Professor of Elec-
trical Engineering at Nagoya University. His
research interests are in the areas of power
electronics, robotics, and evolutionary compu-
tation. He is a member of the IEE of Japan,

FEm C, 123 % 6 =, 2003 &F

1141



