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A method for the design of a robust MRAC(model reference adaptive control) for discrete-time systems in
the presence of unmodeled dynamics is proposed. This controller robustly stabilizes the nominal plant in the
presence of unmodeled dynamics and achieves the desired model reference adaptive control simultaneously.
Furthermore, in this method, we introduce the output-loop compensator for the unmodeled dynamics. Suffi-
cient condition for stabilizing the nominal plant in the presence of unmodeled dynamics is established. Finally,
the results of computer simulation are presented to illustrate the effectiveness of the proposed method.
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1. Introduction

The use of robust adaptive control techniques is moti-

vated by the need to automatically adjust the param- .

eters of the controller for the plant having unknown
parameters(D~(®)  An adaptive controller is formed by
combining an on-line parameter estimator, which pro-
vides estimates of unknown parameters at each instant,
with a control law that is obtained from the known pa-
rameter case. Significant progress has been made on the
convergence of adaptive control algorithms. Here it is
important to note that the conventional adaptive con-
trol strategies cannot be successfully applied to systems
in the presence of unmodeled dynamics®~(11)

The first task of a control engineer in designing a con-
trol system is to obtain a mathematical model that de-
scribes the actual plant to be controlled. The actual
plant, however, may be too complex and its dynamics
may not be completely understood. Developing a math-
ematical model that describes accurately the physical
behavior of the plant over an operating range is a chal-
lenging task. Even if a detailed mathematical model of
the plant is available, such a model may be of high order
leading to a complex controller whose implementation
may be costly and whose operation may not be well un-
derstood. This makes the modeling task even more chal-
lenging because the mathematical model of the plant is
required to describe accurately the plant as well as be
simple enough from the control design point of view.
While a simple model leads to a simpler control design,
such a design must possess a sufficient degree of robust-
ness with respect to the unmodeled plant characteristics.
To study and improve the robustness properties of con-
trol designs, we need a characterization of the types of
plant uncertainties that are likely to be encountered in
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practice. Once the plant uncertainties are characterized
in some mathematical form there can be used to analyze
the stability and performance properties of controllers
designed using simplified plant models but applied to
plants with uncertainties.

In this paper we introduce a method to solve the ro-
bust MRAC for discrete-time systems in the presence of
unmodeled dynamics. Here, we adopt the polynomial
approach for designing the controller. This controller
robustly stabilizes the nominal plant in the presence of
unmodeled dynamics and achieves the MRAC simulta-
neously. Sufficient condition for robustly stabilizing the
nominal model in the presence of unmodeled dynam-
ics is established. This paper proposes a method for
solving an important problem related to model refer-
ence adaptive control system: the unmodeled dynamic
problem. We show how the effect of the unmodeled dy-
namic can be decoupled from the plant output. If the
proposed method is used, it is possible to simply satisfy
both MRAC condition and robust stability condition for
the unmodeled dynamics.

2. Problem Statement

Consider the following single-input single-output
discrete-time system

y(t) = G’(z)’u,(t) ............................. (1)
where
G(z) =G(2) FAG(2) <ovveeeri (2)
2 4B(z
G(z) = %g) e (3)

Alz) =1+ Zaié_i, B(z) = ijz_j
i=1 =0

G(z) is the nominal plant model, AG(z) is unmod-
eled dynamics, and 27! is the backward shift operator,
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2z~ Yy(t) = y(t — 1), d represents the known time delay.
Furthermore, u(t) and y(t) are the plant input and out-
put, respectively. The polynomials A(z) and B(z) are
relatively coprime polynomials ( but having unknown
coefficients, and by # 0 ), and the plant is a minimum
phase system. Furthermore, it is assumed that the un-
modeled dynamics AG(z) satisfies the following relation
for z = €/ in the frequency domain,

| AG(2) IS|W(2) |, z=¢€"",wel0,2n] -+ (4)

where, W(z) = W, (z)/Wy(z) is a function prescribing
“the class of the unmodeled dynamics and is known. Fur-
thermore, W, (z) and Wy(z) are stable polynomials. Un-
der these circumstances, the objective of the controller
design is to obtain the result lim;_, o (y(t) — ym(t)) = 0.
The output ¥, () of the reference model to the command
input r(t) is given by

Y (E) = G ()P (£) o eeeeeeeeee e (5)

where
27%B(2)
Gn(2) A (6)
v . lJ‘ .
Am(z) =1+ Z amiz”", Bm(z) = Z bpmjz™?
=1 7=0

and A, (z) and B,,(z) are stable polynomials. Fur-

thermore, the polynomial A,,(z) and B,,(z) are rel-
atively coprime polynomials, the coeflicients ams, bm;
(i =1,2,---yv;5 = 0,1,2,---, 1 ) of the polynomials
A (2), Bpy(z) are specified beforehand such that the
model G,,(z) is stable and performs the desirable re-
sponses for the arbitrary bounded reference input r(t).
The desired response characteristics are set by designing
the model G,,(2).

3. Design Method for Known Systems

The problem to be considered in the paper is (1) to
design a robust controller which can guarantees robust
stability when the unmodeled dynamics exits and (2) to
achieve the model matching completely even when the
unmodeled dynamics exists.

First, let us consider the case when AG(z) = 0. Then,
the plant can be rewritten as

In this case, let us construct a control system such that
the model matching can be achieved completely for the
nominal system G(z) of the controlled system of eq. (7).

Now, using the pole-zero placement method, it is pos-
sible to design a controller such that the closed-loop
transfer function of the system from the reference input
r(t) to plant output y(¢) matches some desired transfer
function.

If we choose an asymptotically stable polynomial T'(z),
then it is known that there exist unique polynomials
R(z) and S(z), which satisfy the following Diophantine
equation (12):(13)
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Fig. 1. The block diagram of the proposed system.

A(2)N(2) + 27*M(2) = Apm(2)N1(2)

where deg N1(z) = I(l < n), deg N(z) =1+ v —n and
deg M(z) = n — 1. Ni(z) is the part of the desired
closed-loop characteristic polynomial which should not
influence the reference tracking.

Let the control input u(t) be given by

w(t) = To(2)v(t) — To(2)y(t) ---cveveeeeeen (9)
where

Tl(Z) = B%((j))ﬂ%;f)i) e (10)

To(z) = % ....................... (11)

v(t) = r(t) — eo(t) ....................... (12)

O(t) = F/(D(t) —~ym(®)] oo (13

F'(z) = Am(2)Fo(2) (14)

B (2)[1 = F1(2)]

F’(z) denotes a compensator. Fi(z), Fy(z), R(z) and
S(z) are transfer functions. This model matching con-
troller given in eq. (9) could be thought of as a com-
bination of feedback having the transfer function T4 (z),
a feedforward with the transfer function T5(z) and the
output-loop compensator F'(z).

The block diagram of the proposed system is shown
in Fig. 1. :

Our goal is to design a controller that makes the out-
put of the system be given by [279B,,(2)/Am(2)]r(t).
When the control input of eq. (9) is synthesized by uti-
lizing T1(z) of eq. (10) and T5(z) of eq. (11), in order to
achieve the model matching completely, R(z) and S(z)
must satisfy

A(2)R(2) +27%5(2)

Am(2)N1(2)

Here, by using N(z) and M(z) of eq. (8), the polynomi-
als R(z) and S(z) which satisfy the following relations
are selected,
R(z) = N(2) + 2 %K (2)
S(2) = M(z) — K(2)A(z)



where, K(z) is a rational function introduced for the
purpose that the robust stability condition described in
Chapter 4 will be satisfied simply and the model match-
ing will not be destroyed. By utilizing the proposed
method, the model matching condition and the robust
stability condition for additive perturbations can be sat-
isfied simply by properly selecting K (z). When the con-
trol is performed by the control input in eq. (9), the
model matching can be realized completely by using the
above method. This can be confirmed as follows.

Substituting the input w(¢) in eq. (9) into eq. (1),
and using eqs. (10) ~ (17), the following equation can
be obtained.

z_dBm (2)
An(z)

Hence, it is confirmed that when the control is to be
performed by utilizing the input u(t) in eq. (9), the
transfer function of the system between r(¢) and y(t)
becomes equal to that of the reference model Gy, (2).
When the unmodeled dynamics AG(z) exists, substi-
tuting eq. (9) into eq. (1), and using egs. (10) ~ (14),
and egs. (16), (17), it can be shown that ‘

y(t) =

—d

) = S A o 09)

where
T(2) =1 = FU(2) coerervnmmmmnninanaannn. (20)

Ar(z) = 24 A%(2)AG(z)
Am(2)N1(2) B(2)F (z) + Q(2)AG(2)
.................... (21)
F(z)=1-Fi(2)+ z“sz(z) ................. (22)
Q(z) = A(2)S(2)[1 - Fi(2)]

F A (2) N1 (2)A(2) Fa(z) ~-vovvenennn (23)

Furthermore, the error between plant output and the
desired output can be given by

e(t) = y(t) — ym(t)

_ Bl p VAL () e
= = BEA @ - (29

1t is desired to eliminate the effect of unmodeled dynam-
ics AG(z) on output y(t). It is clear that the objective
is accomplished, if F1(2) is chosen as

H(z)
Fi(2) = 002 92
where H(z) is a stable polynomial, and H(z) =

z7*H(z '), a = degH(z). Furthermore, p ~ 1 and
p < 1. Thus Fy(z) is an allpass filter. Here the constant
p is introduced to avoid the singular case in eq. (14).
From eq. (25), we obtain

G o = o1
2= eryw c {0, Qﬂ ............... (26)

By.using egs. (19), (20), (25), (26), we obtain

_dB (
A (2)

As can be seen in eq. (27), the transfer function of
the system between r(¢) and y(¢) becomes almost equal
to that of the reference model. Therefore, it is possi-
ble to realize model matching even in the presence of
unmodeled dynamics.

Furthermore, we choose F5(%), which satisfies the con-
dition that 1 — Fy(2) + 27 4F,(2) is stable.

y(t) ~ 2 2m\E) 2 (L)~ (27)

4. Design Method for Parameter Variation
Systems

When the coefficients of eq. (1) are unknown, or the
plant parameters vary suddenly during operation, the
problem of estimation of the unknown parameters of
plant arises. Eq. (7) can be written as

y(t) == iz y(t) + Y bz u(t)
i= =0

where T' denotes the transpose, and

aT:[a17a27"')anabO)bla'”’b'IH] """" (29>
X)) =[-yt—-1),---,—y(t —n),u(t - d), -,
u(t —d—m)]T - (30)
The vector « represents the unknown parameters of

plant to be estimated. This is accomplished by using
an identification model described by the equation

i(t) = dT(t)X(t) .......................... (31)
where
& (t) = [a1(1), aa(t), -, an(t), bo(t), b1 (t), - -+, by (t)]

and §(t) is an estimate of the output y(t) at time ¢, and
&(t) is an adjustable parameter vector. The parameter
adjustment law, which ensures that the estimated pa-
rameters can converge to their true values, is given by

&(t) = (L—nleo®)]) &(t — 1) = T'(t — 1) X (t)eo(?)
.................... (32)

ALt -1 XOXTOHr(E—1)
o+ MXTOT({E— 1)X(2) ]

Ot = [0 1) -

.................... (33)
o(t) = 0) ~ (1) = g D (o
T(0) = 0L, G0 «vveemveenanneaeaannenins (35)

where n > 0,0 <o <1land 0 <\ <2 @~9),
The control input u(¢) in the adaptive case is given by
Bm(2)N1(2) 8(2)
B(2)R(z) B(2)R(z)

u(t) = u(t) - y(t) --- (36)

where R(z), B(z) and S(z) are the estimates of R(z),
B(z) and S(z), respectively.
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5. Robustness Analysis

Now, we will discuss the robust stability briefly.

5.1 Robustness Analysis for Known Systems
Theorem: If the condition in eq. (37) is satisfied, the
closed-loop system using the control input in eq. (9) is
a robust stabilizing controller.

Q(2)W(2)
Am(2)N1(2)B(2)F(2)
2=e WeE0,27] vreriiiiiienns (37)

<1

Proof: When the control input obtained from eq. (9)
is applied to the plant.in eq. (1), the closed-loop char-
acteristic equation can be given by

Ap(2)N1(2)B(2)F(2) + Q2)AG(2) =0 --- (38)

In the above equation A,,(2)N1(z)B(2)F(z) is the nom-
inal closed-loop characteristic equation and Q(z)AG(z)
is an increment due to the unmodeled dynamics of the
plant. It is important to note that the closed-loop sys-
tem obtained by using nominal controller to control the
current plant is stable, then the system is robustly sta-
ble. - Using small gain theorem)~(7) and eq. (37), it
can be shown that if the nominal closed-loop is asymp-
totically stable, then the closed-loop will be stable even
if the current plant is used in the loop, when

Q(2)AG(z)
An(2)N1(2)B(2)F(z)
5 = ej“’,w €[0,27] vreeeiiriens (39)

<1

Let us choose W(z) as
| AG(2) [<[ W (2) |,
(39) is satisfied if the condition in eq. (37)

z=¢e"" we0,2r] -- (40)

then eq.
holds.

Since the nominal closed-loop system A,,(z)Ni(z) x
B(2)F(z) is stable, therefore, if the condition in eq. (37)
holds, the closed-loop stability for the current plant can
be achieved by using the nominal controller for all un-
modeled dynamics.

(Q.E.D.)
Let us now define the following equation.
_ Q)W (2)
J(z) = A M BFE T (41)

By using eqs. (16), (17), (23) and (41), we obtain
Q(2)W(z)

&) = A M B
_ Un(@MER() + M1~ BACW ()
AN (2)BEF()
A (Z)( 1(2))W(Z)K(Z) _______ (42)

 An(2)Ni(2) B(2)F ()

In the above equation, A,,(z), N1(z), Fa(z), M(z),
Fi(z), A(z), W(z), B(2), F(z) are all known. Then,

BFH C, 123 %75, 2003 F

the problem is equivalent to finding the rational func-
tion K(2) such that J(z) given in eq. (42) can satisfy
| J(2) |< 1. In this way, the rational function K(z) is
independent of the unmodeled dynamics and the plant,
and the model matching will not be destroyed. There-
fore, the rational function K(z) can easily be imple-
mented by using the methods of Ref. (10) and Ref. (11).

Furthermore, A(z) is a stable polynomial in many
cases. When A(z) is a stable polynomial, the transfer
function K (z) can easily be obtained as

_ Li(2)W (2)Q(z)
KO = Loaewen - Re)
_PIEI(Z)Am(Z) 1(2)B(2)F(2)
L EWE-RE) )
where Q(2) = An(2)Ni(2)Fa(z) + M(2)(1 — Fi(z)),
L1(2) is a stable polynamial, and Li(z) = 27 #Ly(271),

B = degL1(z). Furthermore, 0 < p; < L.
Substituting eq. (43) into eq. (42), we obtain

_Zl(Z)

J(z) = p Tl (44)
From eq. (44), we obtain
19 = 2 = <1
2= W € [0,20] e (45)

From egs. (42), (45), we can choose K (z) which satis-
fies the condition in eq. (37). This implies that the cur-
rent closed-loop system can be stabilized by the nominal
controller.

Furthermore, when A(z) is an unstable polynomial,
the transfer function K (z) can be obtained by using Ho,
control theory(10)-(11),

5.2 Robustness Analysis for Unknown Sys-
tems The robust stable condition in the adaptive
case is given by

| J'(2) |= Q)W (z) <1
Am(2)N1(2)B(2)F(2)
z=e wel0,2m] ceeeiiieens (46)
where
Q(z) = A(2)S(2)[1 - Fi(2)]
+Am (2) N1 (2)A(2)Fa(z) - vvn- - (47)

The transfer function K(z) in the adaptive case is
given by
k() - D EWEQE)
Li(2) A(2)W (2)(1 - F1(2))
B @AEMEBARE) | o
Li(2)A2(2)W (2)(1 — Fa(2))

By using egs. (16), (17), (46) ~ (48), we obtain

\/\-/

z) N




3 “
Normallzed Freguency {radfaec]

S [AGE) ], — [ W) |

Fig.2. Gains of | AG(e’) | and | W(e?) |.

Plantougel
B o

50 100 150 250 300 aso 400

00
Timo [sample count]

~—

(a) Plant output y(t) (—) and reference output ¥, {t) (-

15

ool gt

100 150 200 250 300 aso 400
Time [sampie count]

(b) Input u(t)

Esimaton paamslers
&

100 150 200 250 300 250 400
Time [sample count] :

Fig.3. Results of robust MRAC.

1@ 0 | <1
z=e" we [0,27] «oeeeevininn. (49)

Therefore, we can choose K(z) in eq. (48) which satis-
fies the condition in eq. (46). This implies that the cur-
rent closed-loop system can be stabilized by the nominal
controller in the adaptive case.

6. Simulations

In this section, the results of simulations are presented
to give an indication of the performance of the robust

° 50 100 150 200 250 300 as0 400 aso
Time [sample count] N

(a) Plant output y(t) (—) and reference output ym (t) (---)

20

s0 100 150 200 250 300 aso 400 450
Time [eample count)

(b) Input u(t)

o

&
)

Estmaton parmeters

-1 H
s -U’

2
° s0 100 150

200 250 aso 400 450 500
Time [sampla coun]

(c) Convergence of the estimated plant parameters

Fig.4. Results of robust MRAC.

MRAC scheme for discrete-time systems in the presence
of unmodeled dynamics.

Let us consider the system described by the following
equation

G(z) = 2o Cnam(2)
Gaen (%)
Grum(z) = 1.1 — 116271 4 0.24722
+0.1286273 — 0.04548z 74
Gaen(z) =14 0.7271 —0.04272 — 0.127273
—0.02972"* — 0.001827°

Let the estimation model (nominal plant G(z)) be de-
scribed as
G(Z) _ 2_3(b0 + blz“l + bzzﬁz + b32_3)

1+a1z7t +agz=2 +azz=3

For the unmodeled dynamics AG(2)(AG(z) = G(z) —
G(z)) of the above equation, let us consider the case
when W (z) is selected as

W(z) =10

Furthermore, we choose some parameters as follows.
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Fig.5. Results of robust MRAC under parameter
variation.

H(z) = L(z) =14 0.01z"*

0863

 Fog(z)

Fog(z) = 1.01 + 0.89872 1 4 0.88952 >

+0.0088062 73

Ni(z) =1—0.082"1 +0.00072~2
p=0.99, p;=0.001
n=0.001, A=0c=1

FQ(Z)

The reference model Gy, (2) is given by

2731405271 40.06277)
T 1-0.221-0.252"2+0.05273

The gains of AG(e’) and W(e’*) in this case are
shown in Fig. 2. Looking at Fig. 2, it is seen that W (z)
satisfies | AG(e?®) |<| W (e?¥) | for all z = e/*.

The plant output y(t) and the reference output ym(t)
are plotted in Fig. 3 (a) and the convergence of the plant
parameters that were estimated is plotted in Fig. 3 (c).
Fig. 3 shows that the plant output y(t) can converge
to the desired output ¥, (t), when the unmodeled dy-
namics exists. And Fig. 3 (c) shows that the estimated

G (2)
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parameters can stably converge.

The robust adaptation control when F'(z) is not intro-
duced(the conventional adaptation control™), the result
is shown in Fig.4. As shown in Fig.3 and Fig.4, we see
that better results are obtained by using the proposed
method.

In the case when the plant parameters vary suddenly
t0 Ginum(2) and Gigen(z) during operation, the simula~
tion results become as shown in Fig.5. The polynomials
Ginum(2) and Gigen(z) are described by the following
equations:

Ginum(2) = 1.1 — 1.25271 4 0.3652 2
+0.1005273 — 0.045362 %

Glgen(z) =1+ 0.6271 —0.12272
—0.14627° — 0.0309z % — 0.001827°

As shown in Fig. 5, we obtain good control results
regardless of the plant parameter variations during op-
eration. The estimated parameters also converge to their
true values fast.

7. Conclusion

We have proposed a new technique to design a ro-
bust MRAC for discrete-time systems in the presence of
unmodeled dynamics, such that the robust stability of
the discrete-time system can be assured in presence of
unmodeled dynamics. Furthermore, the results of com-
puter simulation have shown that the plant output y(t)
can converge to the desired output ym,(t), when the un-
modeled dynamics exists. Sufficient condition for the
robust stability of the system has been derived.

(Manuscript received Nov. 29, 2001,

revised Nov. 22, 2002)
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