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The goal of the bipartite subgraph problem, which is an NP-complete problem, is to remove the minimum
number of edges in a given graph such that the remaining graph is a bipartite graph. Enlightened by the
elastic net method that was introduced by Durbin and Willshaw for finding shortest route for the Traveling
Salesman Problem (TSP), we proposed a new parallel algorithm for the bipartite subgraph problem. The

" approach jointly tends to satisfy the constraint condition and minimizes the number of removed edges. The
collective computational properties of the proposed approach are also proved theoretically. A large number
of instances have been simulated to verify the proposed algorithm. The simulation results show that our
algorithm finds a solution superior to that of the best existing parallel algorithms.
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1. Introduction

The bipartite subgraph problem is a classical prob-
lem in combinatorial optimization. The task is to find
a bipartite subgraph with maximum number of edges
of a given graph. This problem is known to be NP-
complete, and it is generally believed that the computa-
tional power needed to solve it grows exponentially with
the number of edges ®~®. Thus, the efficient deter-
mination of maximum bipartite subgraph is a question
of both practical and theoretical interest. Because effi-
cient algorithms for this NP-complete combinatorial op-
timization are unlikely to exist, the bipartite subgraph
problem has been widely studied by many researchers on
some special classes of graphs. An algorithm for solving
the largest bipartite subgraphs in a triangle-free graph
with maximum degree three has been proposed for prac-
tical purpose @. Grotschel and Pulleyblank ® defined
a class of weakly bipartite graphs. Barahona ® charac-
terized another class of weakly bipartite graphs. -

For solving such combinatorial optimization, Hopfield
neural networks (7~ constitute an important avenue.
Using the Hopfield neural network, Lee et al. ** pre-
sented a parallel algorithm for the bipartite subgraph
problem. Unfortunately, with the Hopfield network, the
state of the system is forced to converge to a local min-
imum and the rate to get the maximum bipartite sub-
graph is very low. Global search methods such as simu-
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lated annealing can be applied to such problem ®#, but
they are generally very slow “¥. No tractable algorithm
is known for solving the bipartite subgraph problem, and
furthermore there is no more efficient parallel algorithm
than Lee, Funabiki and Takefuji * available for solving
the bipartite subgraph problem.

In this paper, we introduce a parallel algorithm anal-
ogous to elastic net method for the bipartite subgraph
problem. The procedure of the algorithm is similar to
that of the Hopfield network. But different to the Hop-
field network, we construct the energy function for the
bipartite subgraph problem using a nonlinear Gaussian
function, which is enlightened by the elastic net method.
The energy function has two terms, the constraint term
and the cost term, which are reflected in the energy
function with a nonlinear Gaussian function and a lin-
ear function, respectively. The energy function is mini-
mized using gradient descent algorithm and the tradeoff
between these two terms is controlled by a scale param-
eter K. A large number of randomly generated examples
are simulated to verify the proposed algorithm. Simu-
lation results are compared with the ones found by the
algorithm of Lee et al. ®». The reasons to compare the
proposed algorithm with Lee et al.’s algorithm is that
1) Lee et al.’s algorithm is one of the most popular par-
allel algorithms, and 2) Lee et al. claimed that their al-
gorithm could find optimum solutions. The simulation
results show that the proposed algorithm works well on
finding a maximum or a better bipartite subgraph than
the algorithm of Lee et al.

2. The Bipartite Subgraph Problem
Let G=(V, E).be an undirected graph, where V is the

set of vertices and E is the set of edges, if the vertex set
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Fig.1. (a) A simple undirected graph composed of
five vertices and four edges (b) One of its bipartite
graphs.

V of graph G can be partitioned into two subsets S; and
Sy, such that Sy US2= Vand S;NS2= ® and each edge
of G is incident to a vertex in S; and to a vertex in Sy,
then the graph G is called the bipartite graph. Given
a graph G =(V, E), the goal of the bipartite subgraph
problem is to find a bipartite subgraph with maximum
number of edges of the given graph. In other words, the
goal of the bipartite subgraph problem is to remove the
minimum number of the edges from a given graph such
that the remaining graph is a bipartite graph. Consider
a simple undirected graph composed of five vertices and
seven edges as shows in Fig.1 (a). The graph is bipartite
as long as one edge must be removed. Fig.1 (b) shows a
bipartite graph of the graph. A bipartite graph is usu-

ally shown with the two subsets as top and bottom rows

of vertex, as in Fig.1 (b), or with the two subsets as left
and right columns of vertex. And the objective function
can be formulated for this optimization problem whose

minimum value corresponds to the optimal solution. In -

a reasonable formulation, there are two components to
the objective function: one which is used to minimize
the number of removed edges and one which is used to
guarantee every vertex is distributed into one and only
one vertex subset. This optimization problem can be
mathematically stated as finding minimum of the fol-
lowing objective function.

N N ‘
' Z Z dij(msl‘/}sl + WSZ‘GSZ) +
i g#l :
N
Z |Wsl + ‘/;;SZ _ 1I
i=1
where
1 if vertex i€ S,
Vip = »
P {0 otherwise

and d;;=1 if there is an edge between vertex 7 and vertex
3, 0 otherwise.

3. Description of the Proposed Algorithm

Let y;; represent whether or not évertex (=1, ---,
N) should be grouped into vertex subset P (P=1, 2,
which represent subset S; and subset S;). For ex-
ample, the state (y;1=1, y,2=0) indicates that the i

vertex is grouped into subset Sj. The following states.

(¥i1=Ys2=0) and (y;1=y;o=1) express no partition and
double partition violation, respectively. These partition
violation conditions can be expressed by follow:
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The minimum number of removed edges condition can
be expressed by follow:

N N 2 ,
min(z Z Z dikYijYrj)

i k#i g

where d;i, is 1 if edge(i , k) exits in the given graph, 0
otherwise, and corresponds to a symmetric matrix. For
example, the matrix for Fig.1 (a) can be written as:

01 1 11
101 11
[dae]=1 1 0 0 0
110 00
110 00

Enlightened by the elastic net method @ @9 we use
a different energy function from that usually used in the
Hopfield networks . Our energy function is expressed
as the following equation:

N
e=—KAY ¢(Ci,K)+

N N 2
BY ST diyijyng e 3)

i ki g

where ¢(C, K)=e="/K") and

S 2
Ci=> yij—1
=1

which is the 4-term of the constraint condition (Eq.(1))
of the bipartite subgraph problem. A and B are posi-
tive constants, and the K is a positive scale parameter.
From Eq.(3), we can see that the first term of Eq.(3) is
smallest if the constraint condition (Eq.(1)) is satisfied,
and the second term of Eq.(3) is smallest if the bipartite
subgraph is largest.

In order to decrease the energy function (Eq.(3)), so
as to find the optimal solution of the bipartite sub-
graph problem, we can use the gradient descent rule of
the Hopfield network to update the y;;. Takefuji and
Lee @ showed that McCulloch-Pitts neuron model ®
could guarantee an n-variable function converge to a lo-
cal minimum. The McCulloch-Pitts neuron model used
in Takefuji and Le€’s theory is represented as :

yijzlifxij>0,andyij:Oifxij <0

where z;; is the input of neuron f}ij and is updated
according the following equation:

d.il:ij
dt

Tij (t -+ 1) = Ty (t) — At

dz ij

where 7t

is defined by following motion equation:

dz ij
dt
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In the similar procedure with Takefuji and Lee, we use
a sigmoid function as the input-output characteristics of
the neurons:

Yij = T (% /T)
The input z;; to the neuron fij is updated according the
following rule.
d.il)ij

dt

and the motion equation is defined by follow:

dzij g 0e ®)

it By

T (t+ 1) = @y (t) — AN (7)

where K is a positive scale parameter which is as same
as that in Eq.(3). Using Eq.(3) we have:

b N
s € _ AC;¢(Cy, K)/K + BZdikykj ...... (9)
Yij k#1

First, we will prove that our updating rule (Eq.(6) -
Eq.(8)) decreases the energy function (Eq.(3)) with the
time evolution-collective computational properties.

Consider the derivatives of the energy function e
(Eq.(3)) with respect to time £,

de dy;; de
2 NI e 1
dt %: dt dyij ( 0)

Using Eq.(8) we have:

de 1§~ duy duy,
d K = dt * dt

1 dacij Ed_yﬂdx”
K 7 dt d:cij dt
! dzsg

= dyij 9
=% i (EI—”)( 7 ) ................ (11)

J

Since y;; is a monotone increasing function of z; (the
sigmoid function), dy;;/dz;; is positive, and K is a pos-
itive parameter, each term in Eq.(11) is nonnegative.
Therefore

d
d—(; S 0 for all Z,j ........................... (12)

Together with the bound of e, Eq.(12) shows that the
time evolution of the system is a motion in state space
that seeks out minima in e and comes to stop at such
points.

We have proved that for fixed K (K > 0), the up-
date (Eq.(6) - (8)) would result in a convergence to a
‘local minimum of the energy function e. Now we dis-
cuss the behavior of the energy function as the constant
K changes. Informally, the first term of Eq.(3) tends to
impel the solutions to satisfy the constraints, and the
second term of Eq.(3) tries to make the number of re-
moved edges small. Furthermore, it has been proved *®
that because the Gaussian function ¢(C, K ):e“cz/ (2K?)
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is a positive bounded function, at large values of K the
energy function is smoothed and there is only one mini-
mum. At small values of K, the energy function contains
many local minima, all of which correspond to possible
solutions to the problem, and deepest minimum is the
optimal solution. Thus, in the same way as the elastic
net method, our algorithm proceeds by starting at large
K, and gradually reducing K, keeping to a local mini-
mum of e. We would like this minimum that is tracked
to remain the global minimum as K becomes small. In
our algorithm, when K tends to zero, for e to remain
bounded and for every 4, (Z?=l yi; — 1) tends to zero,
i.e., the constrains must be satisfied. Then the second
term (i.e. the cost term) in the expression for e is min-
imized, and finally, a feasible solution (a local or global
minimum) is reached by the second term.

4, Algorithm Procedure

The following procedure describes the proposed algo-
rithm for the bipartite subgraph problem of an N-vertex
graph.

1. Set t=0, the initial value of z,; for =1, ---, N, for

7=1, 2 are randomized.

2. Update the value of y;; using Eq.(6)

3. Compute the B‘Z‘; using following equation.

de al
5, = ACi¢(Ci, K) /K + B > dikyrs
Yij i

for =1, ---, N, for =1, 2.
4. Change the z;; for =1, ---, N, for j=1, 2
Oe
Ty =T — K—.
i J Bys;
5. The output y;; is updated from z;; using following
sigmoid function:

B 1
- 1+ e(*f‘%j/T)

for 1 =1, ---, N, for j =1, 2.

6. Increment the ¢ by 1.

7. If t modulo 5=0, K=0.99 « K

8. If the network reaches a stable state, terminate the

procedure.

9. Go to step 2.

By this procedure, we can find the solution of the bi-
partite subgraph problem simply by observing the final
configuration of y;;, which is similar to the Hopfield neu-
ral network.

Yij

5. Simulation Results

The proposed algorithm was implemented in C++ to
a large number of graphs. The parameter values used in
the simulations were A=3, B=0.08, 7=1.42, the initial
value of K was 0.65 and was reduced by 99% every 5
iterations to a final value in the range 0.08-0.09.

The first graph we tested was a graph with 30 ver-
tices and 50 edges. For this graph, Lee et al. found a
maximum bipartite subgraph with 42 edges embedded
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Fig. 2.
edges.

The original graph with 30 vertex and 50

Fig. 3.

Lee’s solution with 42 edges embedded.

and claimed that this maximum bipartite subgraph was
the optimum solution by exhaustive search on O(109)
searching space *®. Using the proposed parallel algo-
rithm, we found a new maximum bipartite subgraph
with 43 edges embedded. To see if our solution is a
global optimal solution, we used exhaustive search to
this graph on the full searching space, and found that
our solution with 43 edges is a global optimal solution.
Fig.2 shows the original graph of the 30 vertices and 50
edges graph problem. Fig.3 and Fig.4 show the solu-
tions found by Lee et al.’s algorithm and our algorithm,
respectively, where black circles (rectangle) and white
circles represent two disjoint subsets for vertices. In our
100 simulations with different initial values of inputs to
neurons, we found 9 different optimal solutions. Fig.5
shows one of the another optimal solutions. We also il-
lustrated a typical progressive intermediate solution dur-
ing the variation of K. In the calculation shown here, K
was reduced to 0.08 in 990 iterations. Figures (Fig.6(a)-
(£)) show the solutions found by our algorithm at K
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Fig.4. The optimal bipartite subgraph with 43
edges embedded produced by proposed parallel
algorithm.

Fig. 5.

One of the another optimal solutions for
the graph in Fig.2.

=0.60, 0.49, 0.32, 0.15, 0.08. Fig.6(a) has “no partition”
and “double partition” violation, because vertices 3, 5,
7,8,9, 17, 20, 21, 24 were partitioned into both subsets,
and vertices 6, 12, 16, 19, 25, 26 were not partitioned
into either subsets. Fig.6(b) has “no partition” viola-
tion, because vertices 17, 24, 29 were not partitioned
into either subset. Fig.6(c) and Fig.6(d) only had 40
edges and 42 edges, respectively, although the solutions
fulfilled the constraint requirement for e. Fig.6(e) shows
an optimal solution with 43 edges embedded when the
scale constant K changes to a very small value (K=0.08).

To widely verify the proposed algorithm, we have also
tested the algorithm with a large number of randomly
generated graphs defined in terms of two parameters, n
and p. The parameter n specified the number of vertices
in the graph, the parameter p, 0 < p < 1, specified the
probability that any given pair of vertices constitutes an
edge. In the experiments, up to 300-vertex graphs with
different probability were used to evaluate the proposed

IEEJ Trans. EIS, Vol.123, No.7, 2003
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125610111315 16

3578914172021 19 21 23 25 27 28 30

22 2324 27 28

123457891011
13 15 17 18 20 21 24 29
30

3478912141820

22 26

(a) K=0.60 (b) K=0.49

56711131516
123 24 25 27 28 30

348910121417
18 19 20 22 26 29

34891012 1417 18
20 22 26 29

(c) K=0.32
40 edges embedded

(d) K=0.15
42 edges embedded

12567111213 1516
21 23 24 25 27 28 30

3489101417 18 19
20 22 26 29

(e) K=0.08
43 edegs embedded

Fig.6. FExample of the progress of the proposed
algorithm for the graph of Fig.2.

Table 1. Solutions produced by the algorithm of
Lee et al. and our algorithm.

No.vertex | Probability | No.edges | Lee et al. | Propose algorithm
20 0.05 10 10 10
20 0.15 30 25 25
20 0.25 50 40 40
50 0.05 61 52 53
50 0.15 183 133 136
50 0.25 305 203 205
80 0.05 158 127 134
80 0.15 474 325 330
80 0.25 790 504 | 513
100 0.05 247 196 207
100 0.15 742 492 500
100 0.25 1235 761 777
150 0.05 558 402 419
150 0.15 1676 1062 1068
150 0.25 2790 1645 1683
200 0.05 995 685 715
200 0.15 . |. 2985 1838 1857
200 0.25 4975 2886 2918
250 0.05 1556 1060 1086
250 0.15 4668 2809 2832
250 0.25 7780 4435 4498
300 0.05 2242 1486 1510
300 0.15 6727 3987 4039
300 0.25 11212 6393 6417

algorithm. The simulation result were also compared
with that found by Lee et al.’s algorithm. For each of
instances, 100 simulation runs were performed. Informa-

TFH C, 123% 75, 2003 &

tion on the test graphs as well as all results are shown in
Table 1. The results that we recorded for each graph are
the solutions in number of embedded edges, produced by
the algorithm of Lee et al., and by the proposed algo-
rithm, respectively. Table 1 shows that the proposed
parallel method could find a better solution than Lee et
al.’s algorithm in all problems.

6. Conclusions

Enlightened by the elastic net method, we have
demonstrated a successful parallel algorithm of solving
the bipartite subgraph problem, and showed its effec-
tiveness by simulation experiments. The algorithm used
two different expressions for the constraint condition and
the cost function in energy function. The former used a
Guassian function, which is strongly dependent on: the
scale parameter K, and the latter used the cost function
directly. Thus the network works to force the solution
to satisfy the constraints first in the limit where K tends
to zero, and finally get a local or global minimum. Spe-
cially, using this algorithm we were able to find a new
maximum bipartite subgraph with 43 edges embedded in
the graph with 30 vertices and 50 edges which is better
than the best results *» which were reported to be the
”optimum solution” for the same problem. The sim-
ulation results also showed that the proposed parallel
algorithm could provide better solutions than the best
existing parallel algorithms for most tested graphs.
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