Paper

An Efficient Integrated Development Environment for
Plant Control Software

Masakazu Takahashi® Member
Kazuhiko Tsuda,**_ Member

This paper proposes an efficient environment to develop plant control software (PCS) that controls the
space plants for satellites or space stations. Generally, PCSs for space plants have been individually developed
because each plant operates in different way and have strict restrictions on types, performances and admea-
surements of the hardware to be used. Because of this individual development, the qualities of PCSs heavily
depend on the developers’ abilities and experiences, and the development period tends to get longer. To solve
* this problem, we propose an efficient environment that make possible to develop high quality PCSs (1) by
developing software components based on domain analyses of PCSs, and (2) by conveying design information
accurately throughout the development processes. We have developed a prototype of this environment and
applied to the actual developments of PCSs. As a result, we are able to convey precise design information
throughout the development processes and have succeeded to develop PCSs that are fully conformable to
our requirements. We are also able to predict the program size and the processing time of the PCSs within
10[%] errors at the initial phase of development. Moreover, we have developed most parts of the PCSs using
software components. The reuse rate of software components is 65.5[%], and development time is cut down

to 42.1[%] in comparison with the developments from scratch.

Keywords:

Software Components, Domain Analysis, Plant, Motion Control Software

1. Imtroduction

A “plant” is machinery and equipment to manufac-
ture mechanical or chemical products. This paper fo-
cuses on space plants for satellites or space stations, and
proposes an efficient method to develop motion control
software for space plants that are used for material ex-
periments and for controlling environmental equipment.
Since space plants need to operate in ultimate environ-
ment in outer space, there are various constraints on
its hardware @ and software ®. And the operation of
each plant is different. For these reasons, plant con-
trol software (PCS) has been developed individually for
each plant. The functionality and the performance of a
developed PCS highly depend on the developers’ experi-
ences and techniques, and there have been troubles such
as protracted development period and increased devel-
opment cost. To solve these problems and to develop
PCSs efficiently, we need to standardize PCSs and their
development processes and to enable the development of
high quality PCSs without depending on developers’ ex-
periences and techniques. Various methods are proposed
to address these problems such as Domain Analysis ®,
CASE ® and Framework ‘. However, these methods
impose a heavy burden on developers to deeply under-

* Galaxy Express Corporation
3-5-1 Mukodaichou, Nishitokyo-shi, Tokyo 188-8555

** (radudate School of Systems Management, The University of
Tsukuba, Tokyo
3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012

E

C, 123% 9%, 2003 &

[==]
Coe

1573

stand the methodologies, tools and models. The outline
of the proposed method is described below:

(1) Develop software components for deciding re-

quirement specification and for implementing
PCS, by analyzing PCS domain.

(2) Create the requirement specification, using soft-

ware components for creation of PCS prototype.

(3) Translate requirement specification to Z lan-

guage, using similarity of PCS’s functions.

(4) By taking an advantage of Z language that al-
lows hierarchical description, develop the require-
ment specification hierarchically and create design
specifications for implementation.

Based on the design specification, select soft-
ware components for implementation of PCS. In
this selection, the lists of function categories and
input/output data shall be used.

Construct the targeted PCS by combining the
selected software components. Then customize
the PCS for specific requirements, if necessary.

We have developed a prototype of Integrated PCS De-
velopment Environment (IPDE) which implements the
above stated method. As a result of applying the IPDE
to several PCS developments, the PCSs have been devel-
oped comnsistently from requirement definition through
implementation. The IPDE also allows us to predict
the program size and the processing time of PCSs within
10[%] errors. The reuse rate of the source code on the
software component-based PCS developments is 65.5[%)],
and the development time is cut down to 42.1{%)] in com-

(5)

(6)



parison with the developments from scratch. As a re-
sult, we have confirmed that IPDE opens the way to
efficiently develop highly conformable PCSs.

2. Problems on PCS Development and
Solutions

2.1 Actual Situation of PCS Development
There are two kinds of methods to develop PCSs that
control plant motion: one uses PLC (Programmable
Logic Controller) and another uses PC (including Dis-
tributed Control System). IEC61131-3 is a development
standard for PCSs that operate on PLC. It is determined
based on experiences in development of plant motion
control software. However, IEC61131-3 has difficulties
such as: (1) it is an implementation language for PCSs
and does not support upstream processes of PCS de-
velopment, and (2) more standardization: of feedback
control function is required. Furthermore, control de-
vices which implement PCSs must satisfy NASDA stan-
dards® to be used in peculiar environment like outer
space. At the present, no PLC satisfies these require-
ments and therefore we need to develop PCSs on PC in
order to use them in outer space.

2.2 Problems on Development and Solutions
The following factors make it difficult to develop PCSs.

(1) Tt is difficult to create PCS requirement speci-

fication with fully functions.

(2) It is difficult to transmit contents of require-
ment specification to contents of basic and de-
tailed design.

(3) It is difficult to develop PCS adapting the result

of detailed design. :

The factor (1) is caused by the fact that PCS is typ-
ically developed in individual order basis that is con-
tacted with customer. To eliminate this factor, the
developers of a PCS need to fully clarify the require-
ments for the PCS. The factor (2) and (3) are caused by
the ambiguity of design information. It is necessary to
develop PCS that design details in preceding processes
must be transmitted to subsequent processes accurately.
We use Z language ® © 9 which allows formal spec-
ification description. In this proposed method, Z lan-
- guage is used only for transmitting information between
processes (refer to phase 1 to 3 described below). Z lan-
guage also allows hierarchical specification description.
In this proposed method, requirement specifications in
7 language are hierarchically developed into basic and
detailed designs. This developing process is repeated un-
til it reaches to granularity of software components for
implementation. Based on the detailed design, the soft-
ware components are selected and combined to imple-
ment PCS. To address the above mentioned three prob-
lems, this method divides development processes into
the following three phases (Fig.1).

Phasel: -Creation of Requirement Specification
Create requirement specification with fully functions.
PCSs require same and similar functions even if the
control targets or the control methods are different.
Utilizing these characteristics, create fully function list
of PCS, then create requirement specification selecting

1574

TInput:
User
Requitement
w» l:'  PCS Development Process
Creation of
Speaification
¢ Z's Basic Design
Requirement 4"‘ .
Specification 4 Detail Design| Adapted
s Software
= o
Y Selection & List Output:
1 Zs . Combination . stomizing . Object
i |Detail Design of Software Parameters 4 PCS
i | Components Of Sofeware |
Phase | Creation Phase 2. Basic Phase 3: lmp]emenudon
of Requement | Design & Deil
Specification Design
Fig.1. Outline of the proposed PCS development

method.

Fault Detection
& Recover

Execution Control ~ Sequence Control

Input/Output Exterior Interface

‘Analog Output
Management
—| Analog Output

R
Digital Output
—I Digital Output
—l Analog Input

Digital Input

{ Filtering

Engincering

Command

Editin; Built In Test

Command

Transmussion Inspection

I

Command
Analysis

I

‘Malfunctioned
Intermipt

Command

l

State Indicati

-

L
*]
W
B
g
Jod
5

®

*: Interrupt Execution T

Transmission

Data Analysis | *

Unit
T "

il

L]+
Data Reception

Fig.2. List of SCR.

required functions.

Phase2: Basic and Detailed Design Transmit
design information accuratelly. Contents of require-
ment specification are transmitted to contents of ba-
sic design specification by using Z language. And con-
tents of basic design are transmitted to detailed design
accurately as it. As a result, detailed design specifica-
tion is created adapting to the requirement specifica-
tion.

Phase3: Implementation Implement PCS adapt-
ing to detailed design specification. Based on the PCS
detailed design specification, applicable software com-
ponents (for implementation) are selected. Combine
selected software components into PCS.

3. Creating Requirement Specification

3.1 Outline of How to Create PCS Require-
ment Specification At the phase of creating re-
quirement specification, it is important to decide the
functions that individual PCS has. At this phase, it
isn’t necessary to decide detail of the function. In the
proposed method, we develop software components that
simulate outline of functions. The prototype of PCS
is developed by using these software components. Work
the prototype and check the behavior of it. When the be-
havior of the prototype confirms to user requirement, we
create the entire requirement specification of the PCS by
combining the requirement specification templates and
the customizing parameters for the software components
that are prepared in advance. The following subsections

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

Table 1. list of PCS functions -Extructed-.
subject PCSs
PCS parts function detailed function semiconductor Thermal strage tank |- - -
group experiment facility | control device pressure
on satellite on space station | control device
sequence control group | sequence control | sequence control X X X ---
feedback control group | feedback control | feedback control X X X ---
execution control | execution control X X X ---
common input/ analog output X X X -
functions output analog input X X X
digital output X X X
digital input X X X
exterior command send X - -
interface command receive X X X
sent command creation X
received command analysis X X X
state data send X X X - -
indication data receive X X
sent data edit X X X
received data analysis X X
fault inspection X X X ---
detection control device check X X X
and recover machine check X X

outline the processes to develop the software components
and to create the requirement specification.

3.1.1 Outline of Software Components Devel-
opment We need to clarify the functions of the PCS
in order to develop the software components used for
creating PCS prototype (hereafter, SCR: Software Com-
ponents for Requirement). We firstly compared and
examined more than twenty PCSs, including the ones
for semiconductor production, thermal control, storage
tank and chemical production. Those plants have 20-
40 machines to be controlled by the PCSs. The con-
trol software is written in high-level language such as
C or C++, and the Line Of Codes (LOC) is between
7000 and 20000. We conducted the clustering of these
PCSs by focusing on the targets of PCS control, and we
found that most of them are composed of two groups:
sequence control and feedback control. Then we con-
ducted further clustering on each of these groups to cat-
egorize their functions and found that the PCSs consist
of seven major functions as shown in Tablel, which are
sequence control, feedback control, execution control, in-
put/output, exterior interface, state indication and fault
detection and recovery. 7

Then we created SCRs that correspond to the func-
tions in one-to-one or one-to-many relation. The com-
mon function parts among all PCSs are developed as
source codes, and the peculiar parts for each PCS (such
as signal types and operation timing) are developed as
parameters. The SCRs can be customized by giving
these parameters externally. Furthermore, we prepared
two types of requirement specification templates: the
one written in natural language (N requirement speci-
fication) and the one written in 7 language (7 require-
ment specification). The contents of both templates are
the same, except the languages used. We use the N re-
quirement specification to investigate the contents and
we use the Z requirement specification as basis for de-
signing PCSs. The external parameters are variables

T C, 123% 95, 2003 &F 1575

so we can create PCS requirement specifications by en-
tering actual values into these parameters. Fig.2 shows
the configuration of a SCR developed with the method
above. Fig.3 shows a part of the data structure of the
SCRs. The parameters to customize the SCR. are stored
in this structure.

3.1.2 Outline of Requirement Specification
Creation We create PCS requirement specifications
in the following three steps (see Fig.4):

(1) Extract information that needs to realize PCS
We determine the configurations of the plant (hard-
ware) and the PCS (software) based on the design
drawings and the operation scenario of the plant.

Then we determine the information required to cre-

ate PCS prototype (such as plant operation sequence,

output information, and PCS control cycle).
(2) Construct PCS prototype using the design infor-
mation
Next, we combine the SCRs and construct the PCS
prototype based on the extracted information.
(8) Confirm PCS requirement through checking be-
havior
Finally we operate the developed PCS prototype
and check if its behavior conforms to the customer’s
requirements. When it does not, we go back to the
step (1) and modify the prototype. This process is
repeated until the behavior of the PCS and the cus-
tomer requirements correspond. We collect the N re-
quirement specification templates and the customiza-
tion parameters that are used to create the prototype,
create the N requirement specification for the PCS,
and check its content. When the content is adequate,
we collect the Z requirement specification templates

and the customization parameters, and create the Z

requirement specification for the PCS.

To effectively perform the procedure above, we have
developed a tool to support the development of PCS pro-
totype. Fig.5h shows a sample screen of the tool. This



m | m

11

1 Analog Output Port Digital Output Port
Machine +) Table Table .
Output Table ' Machine ID Machme ID
State ID m Analog Output ID m m | Digital Output ID
Machine ID Analog Data Name Dlg}tal Data Name
Machine Type ' Range Digital Qutput
Port ID 1 Analog Output Value 1 1 Value
Output ID Sequence Contro? }: &  -ee.. | @ p—A— | .-
Output Value Table Machine Table
------ State ID P 1 Machine ID
State Ti iti State Name Machine Name
W Next State ID 1 Machine Type
State 1D
Next State ID 1 1 1 1
Transition
Condition ID Analog Sensor Table .
Transition m Machine ID m %ﬁmw
Condition ..... Analog Sensor ID m Digital Se .
Analog Sensor Name m Plant ngf AlS nsor
Analog Sensor Range Configuration Table igital Sensor
m 1 Measured data Machine ID Name
re=-==-=== —TmememeEsma o Parent Measured data
I Target Management Control Formula k MachineId | |
1| Table m 1] Management Table |} Child .
I| State ID Machine ID 1 Machine ID
I| Machine ID Operational | E==d=s=ssc=sccsssssmssccrossmsssssscsssmmsass=s=sssssss—smmaas
1| Target Value Variable 1 1 . L
il ... State Variable 1 *1: “1”,“m” shows multiplication.
1 P coefficient ...... ] L Hrmm— = 7 Shows Tables related to Process Control.
1 I m m [ 1 F3 Y mm — — “ Shows Tables related to Feedback Control.
L ™ o e J *4; “=======: > Shows common Tables.

‘ Fig.3. Configuration of PCS data - Extracted -.

Plant Operation
Scenario

' i PCS + Information (hat Simulate PCS
needs to realize PCS Prototype

If necessary add
following functions to
Prototype

Feedback to Lack and Unconformity

Extract
Information
That Needs To
Realize PCS

Construct PCS
Prototype Using
Design Information

Confirm PCS
Requirement Thiough
Checking Behavior

Plant Configutation
All Tnput/QOutput Data

Plaat Opeiation Sequence | npuieoccion fotermupt
Equipment Output for "
Every Stato Data Editing

Execution Cycle for Command

Every Functions

Transmit/Receive

Fig.4. Tools of creating PCS requirement specification.

. screen is to enter the operation scenario of the sequence
control group in the form of state transition table. (™
As mentioned earlier, PCSs consist of two groups:
sequence control and feedback control. In general, se-
quence control group of PCS is designed by defining the
motion sequence of the plant and feedback control group
of PCS is designed by defining the feedback control for-
mula. So there are some differences of PCS designing

method. Therefore this paper discusses how to describe’

requirement specification of sequence control and feed-
back control groups in Z language separately.

3.2 Requirement Specification of Sequence
Control Group in Z Language This subsection
describes the creation method for Z requirement specifi-
cations of the sequence control group. Creation of re-
quirement specification for sequence control needs all
SCRs except feedback control. Fig.6 shows the N re-
quirement specification and Fig.7 shows the Z require-
ment specification of analog output management SCR.

3.2.1 Creating N requirement specification of
sequence control group The N requirement spec-
ification is composed of the data definition and function

1576

BRB

Fig.5. Sample screen of Tools of creating PCS re-
quirement specification.

definition parts.

The data definition part consist of four parts: machine
data definition, measured data definition, output port
definition and sequence control output definition. The
machine data definition part defines the machine name
to be controlled (line 4 in Fig.6). The measured data def-
inition part consists four definitions: the machine name
that the measured data belongs to, the measured data
name, data type and data unit (line 8 in Fig.6). The out-
put port data definition part defines the machine name
that the output port belongs to, the output port name,
the data type and the data unit (line 13 in Fig.6). The
sequence control output data definition part defines the
state ID (unique ID to identify a particular step in the
plant operation), the machine name, the output port
name and the output value (line 18 in Fig.6).

The function definition part defines the functions of
analog output management SCR. The example on lines
24-25 in Fig.6, firstly obtains output port name and out-

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

//Data Definition Part

define data: machine data

//Machine Table Data ( Machine Name )

“Transporter”

define data: measured data

//Sensor Data List (Machine Name, Measured Data Name, Data Type, Data Unit )
“Transporter","“Transposter Position”,“Analog”,"mm"

“Transporter",“Transporter Power Unit“,“Digital”,"on=1/off=0"

define data: output port data

//Output port List ( Machine Name, Output Port Name, Data Type, Data Unit )
“Transporter”,“Transporter Motor RPM*“,“Analog",“RPM"
“Transporter”,“Transporter Power Unit“,"Digital","on==1/off=0"

define data: sequence control output data

//Sequence Output Data ( State ID,Machine Name, Output Port, Output Value )
0,“Transporter”, “Transporter Motor RPM*",0.0
0,“Transporter”,“Transporter Power Unit",0
/[Function Definition Part

define function: analog output

//Specification of Analog Output Management
“Get Output Port Name and Output Value that is shown at Machine ID and State ID."

“Output Output Value through Output Prot that is shown Machine ID, State ID and Qutput Port Name.”

Fig.6. Requirement specification of sequence con-
trol in the natural language.

“/f” line means notes

//Data Definition Part
State ID={0, 5, 10....} //Definition of State ID
//Definition of Machine Name
//Definition of Machine ID

//Definition of Output Port

Machine Name={Transporter, Pomp,.....}
Machine ID={1001, 1002,.....}

Output Port Name={ Transporter Motor RPM, ....}
Qutput Port ID=(101, 102,.....}

Analog Qutput =(State ID x Machine ID x Qutput Port ID)
l->Qutput Value

Analog output={(0, 1001, 101)1->0.0, (0, 1002, 102)I-> 0.0,.....

//Definition of Qutput Port ID

//Defimtion of
//Analog ‘Output Data Type

//Definition of Analog Output

*1: “?P” means input data.
*2: “1” means output data.
*3: “/f” means notes

//Function Definition Part
-~ Analog Qutput

//Definition of Analog Variables
State ID?, Analog Machine ID?, Analog Output?, Output Value!

//Prediction of Analog Output Management

State ID?=0 and Analog Machine ID?=1001 and Qutput Port ID?=101
=>Qutput Value! = Analog Output

Fig.7. Example of requirement specification of se-
quence control module in Z language.

put value that are shown at machine ID and state ID.
Next, the output values is output through the output
port that is shown at machine ID, state ID and the out-
put port name.

3.2.2 Creating Z requirement specification of
sequence control group The Z requirement spec-
ification consists of the data definition and function def-
inition parts.

The data definition part of Z requirement specification
is created by translating the N requirement specification
from natural language to Z language. However, we need
to break down the data table into individual data items
because Z language cannot handle the data in table for-
mat (lines 7-8 in Fig.7).

The function definition part is a Z language version of
the N requirement specification. The example on 16-17
in Fig.7 describes the function that derives the analog
output value from the input variables. On lines 16-17 in
Fig.7, ”State ID? = #+# ,Machine ID = ## and output
port! = ## => output value ! = Analog output” is the
template of the Z requirement specification for sequence
control SCR, and ## indicate the parameters that are
obtained from the design information of PCS prototype.

C, 123 %95, 2003 &

1577

//Definitions of state Variables and Operational Yariables of Each Machine for Feedback Control

define data: machine data

/Machine Table Da(a(Machi.nc Name)

“Heater”

define data: measured data

//State Variables(Machine Name, Sensor Name, Data Type, Data Unit)
“Heater”,“Heater Temperature”,“analog”, “degree”

define data: output port data

/{Operational Variables(Machine Name, Output Port Name, Data Type, Data Unit)
“Heater”,“Heater Current”, “Analog”, “Ampere”

“Heater”,“Heater Voltage®, “Analog”, "Volt”

define data: feedback output data

//Target Value (State ID, Machine Name, Output Port Name, Target Value)
0, “Heater”, “Heater Temperature”, 30.0

/Mescription of Control Method “/f” ine means notes

define function: Feedback Control Output
/fSpecification of Feedback Control
“Get Target Value that is shown at Machine ID, State ID and Output Port Name”
“Calculate Heater Current and Voltage 1n order to make Difference between State Valve and Target Value”
“Qutput Heater Current and Heater Voltage through the Qutput Port
that is shown at Machine ID and State ID”

Fig.8. Requirement specification of feedback con-
trol in natural language.

#/Variable Definition Part

State ID =<0, 5, 10....>

Machine Name = { Heater, .... }

Machine ID = {2001, ....}

State Value = { Heater Temperature, ...}

State Value Sensor ID = {201,.... }

Operational Value = Heater Current, Heater Voltage, ...}
Operational Value ontput Port ID = {301,302, ...}
Target Value= (State ID x Machine ID x State Value Sensor ID) I-> State Value
Target Value= {(0,2001,201) |-> 30, (5,2001,201) I-> 40, ....}

HProcess Description Part
—- Feedback Control

/Mnput/Output Data Definition Part

//Definition of State ID
/Definstion of Analog Machine Name

" I/Defmition Analog Machine ID
I/Definition of State Value
/Defimtion of State Value Sensor ID
//Definition of Operational Value Name
/Defimtion of Operational output Port ID

#/Schema of Feedback Control

State ID?, Machine ID?, Target Value?, Heater Temperature?, Heater Current!, Heater Voltage!
I

" means input data.
means output data.
*3: “/* means notes

#/Process Definition Part
JSpecification of feedback control
State 1D?=0 and Machine ID?=2001 and State Value sensor ID=201 => State Value = Target Value

Calculate Heater Current and Heater Voltage with PID Control in order to make Difference between State Value
and Target to Zero

Fig.9. Example of requirement specification of
feedback control module in Z language.

3.3 Requirement Specification of Feedback
Control Group in Z Language Requirement
specification of feedback control group is created in the
similar way of sequence control group. Creation of re-
quirement specification for feedback control needs all
SCRs except sequence control SCR. At the phase of
creating requirement specification for feedback control
group, it is important to efficiently define state variables,
operational variables and outline of control method.

3.3.1 Creating N Requirement Specification of
Feedback Control Group Fig.8 shows the N re-
quirement specification of feedback control group, which
is created by using software components. This specifi-
cation consists of two sections: definitions of state vari-
ables and operational variables of each machine for feed-
back control, and description of control method.

The state variable and the operational variables re-
quired for feedback control are specified in this section.
The description of control method describes the func-
tional outline of the feedback control by setting PID
coefficients in standard PID control formula (lines 19-25
in Fig.8). This is because the detailed feedback control
logic is not determined yet when creating the require-



ment specification.. This simplification is possible be-
cause it does not need to contain the detailed feedback
control logic in this phase.

3.3.2 Creating Z Requirement Specification of
Feedback Control Group At this phase, it is diffi-
cult to further clarify the specification since the detailed
control method is not determined yet. Therefore, this
specification is described as schema in Z language as it
is (Fig.9). The requirement specification consists of the
variable definition and process description parts.

The variable definition part is described on lines 1-
10 in Fig.9. The variable definition part is Z language
version of ”definitions of state variables and operational
variables of each machine for feedback control” of N re-
quirement specification. Some design information is ap-
pended on it.

The process description part is described on lines 11-

21 in Fig.9. The process description part consists of the

input/output data definition part and the process def-
inition part. The input/output data definition part is
described on lines 13-14 in Fig.9. This part indicates
whether the defined data is used as input or output in
the process definition part. The process definition part is
described on lines 16-20 in Fig.9. This describes the out-
line of feedback control just like the one in N requirement
specification. For example, ” Get Target Value that is
shown at Machine ID, State ID and Output Port Name”
on line 22 in Fig.8 is developed to ”State ID? = 0 and
Machine ID? = 2001 and Control Value Sensor ID? =
201 => control Value! = Target Value” on line 18 in
Fig.9. ‘ ‘

4. Basic and Detailed Design Methods

4.1 Outline of Basic and Detailed Design
This subsection describes a method to develop the imple-
mentation design (it consists of both basic and detailed
design) of PCS based on the Z requirement specification.
In our proposed implementation design method, we cre-
ate design specifications of PCS by hierarchically devel-
' oping the Z requirement specification. It is developed
until the granularity equals to the software components
used for implementation (see section 5 for the details).
The proposed method uses the following characteristics
of Z language: '

(1) Specification can be described hierarchically.
(2) Variables can be defined accurately.

In the proposed method, a boundary between basic
and detailed design phases is not clarified, and it is dif-
ficult to determine what tasks should be carried out in
each phase. Therefore, we determine the tasks by com-
paring our method with NASDA Software Development
Standard (see Table2). ® The determined tasks are as
follows.

In the basic design phase, the following tasks are re-
quired: ‘

[Basic 1 | Clarify the functions described in Z re-
quirement specification, and

[Basic 2 | Clarify the input/output data of each
function.

1578

In the detailed design phase, the following tasks are

required:

[Detail 1 | Divide the functions described in basic de-
sign, and

[Detail 2 | Design the actual input/output data.

According to NASDA Standard, we need to develop
both interface and database specifications. In the
proposed implementation design method, the interface
specification is described in the input/output part of
implementation design specification, and the database
specification is described in the data structure shown
in Fig.3. Thus, our method includes every information
required for designing PCS and is applicable for PCS
implementation design.

Note that the detailed level of Z requirement specifica-
tion is different between the sequence control group and
the feedback control group, which means the different
design information must be defined at the implementa-
tion design phase. Therefore, we develop the implemen-
tation design methods separately for sequence control
group and for feedback control group.

4.2 Basic and Detailed Design Method for Se-
quence Control Group This subsection discusses
a method to create basic and detailed designs of se-
quence control group. The sequence control group per-
forms motion control output during the sequence prede-
fined for a plant.

Firstly, we describe the method to create the basic
design. In the basic design phase, we need to clarify
the functions and the input/output data that are de-
scribed in the Z requirement specification. We already
have defined the outline of the sequence such as states,
transition criteria, and motion control output in the Z
requirement specification when we created the PCS pro-
totype. Therefore, there is no task to be carried out in
the basic design phase of sequence control group.

Secondly, we describe the method to create the de-
tailed design of the sequence control group. In the de-
tailed design phase, the following tasks should be carried
out according to the above stated definitions.

[Detail 1 |Divide a plant into sub-plants, which are
the actual units to be controlled. Then divide the
sequence (states, transition criteria, and motion con-
trol output) of entire plant and assign it to each sub-
plant accordingly. The dependent relations must be
assigned between the sub-plants and the entire plant.

[Detail 2 | Describe the valid digits and the hard-
ware interface format of output values. Those should
be clarified through the preceding design work.

We have developed Sequence Control Design Tool
(SCDT) to execute the above tasks efficiently. Fig.10
shows the outline of SCDT and Fig.11 shows sample of
SCDT screen. SCDT is composed of three subsystems:
sub-plant division tool, sub-sequence division tool, and
7 language transformation tool. The sub-plant division
tool is used to divide a plant into sub-plants in [Detail 1].
Dividing control target into multiple sets of actual func-
tions make us easy to design and understand the entire
control target. The sub-sequence division tool is used to
divide the sequence of entire plant into sub-sequences of

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

Error Detection

and Recovery

Response Time

Table 2. NASDA'’s software development standard.
Requirement Basic Design Detail Design Implementation | Verification
Definition
Requirement Basic Design Software IF Detail Design Database File Test
Specification Specification Specification Specification specification
User Scenario Function Not Applicable Module Not Applicable Not Applicable | Combined
(Operational Configuration Configuration Module Test
Sequence) Performance Detail Control Flow and
Concreate Error Detection Detail Data Flow Hardware-Software
Sequence and Recovery Global Data Combined Test
Function Function Not Applicable Module Design Not Applicable Sorce Code Single
Contents Configuration Input/Output Data Module Test
Performance Performance Local Data and
Output Sequence | Error Detection Interrupt Signal Combined

Module Test

Memory Size
Execution Time

and Recovery Concrete Sequence(Control,

Execution Cycle | Sequence Algorism, Error

Algorism Handling)

Resource Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable | Hardware-Software
Requirement Combined Test

IF Requirement

Input/Output Data

IF Specification

Not Applicable

Not Applicable

Not Applicable

Hardware-Software

Input data Explanation IF Name, IF Protocol Combined Test
Output data Unit and Precision |IF Data, Hardware IF
Databse Upper/Lower Limit | Not Applicable Not Applicable File/Access Type | Database Combined
Requirement Input/Output Cycle Record/File Name Module Test,
Record Input/Output Data Data Type, Digit
Attribute Global/Local Data Initial Value

Input Data

(1)Machine Table

(2)Digital Output Port Table

(3)Digital Sensor Table

(4)Analog Output Port Table

(5)Analog Sensor Table

(6)Sequence Control Table

(7)Machine Output Table
(8)State Transition Table

r

SCDT
Sub-Plant
Division Tool
Sub-Sequence
Division Tool

7 Language -
Transformation Tool

Sensor Data(Global Data)
(1)Global digita} Variables that is introduced expediently
(2)Giobal analog vanables that is introduced cxpediently
(3)Global digical variables that belongs to other Machine
(4)Global analog variables that belongs to other Machine

Fig. 10.

Output Data
(1)D1vided Digital Output Port

Table
(2)Divided Digital Sensor Table
(3)Global Digital Vanables
(4)Local Digital Variables
» (5)Divided Analog port Table
(6)Divided Analog Sensor Table
(7)Global Analog Variables
(8)Local Analog Variables
(9)Divided Process Control Table
(10)Divided Machine Qutput
Table
(11)Divided State Transition Table

Outline of SCDT.

to Sub—Plant [Heater

T ¢ dd Suir-piany Heator 2

each subsystem. The sub-sequences are created by di-
viding the state transition table for the entire plant into
the ones for the sub-plants. Then we state the collab-
orative action between the sub-sequences. In this way,
we are able to limit the range handled by each control
system and simplify its logic. This should raise the ef-
ficiency of PCS development. The 7 language trans-
. formation tool translates the design information (sub-
sequences, or state transition tables, for sub-plants) de-
scribed in natural language and the collaborative actions
between the sub-sequences into Z requirement specifica-
tions. Fig.11 shows a sample screen where a ” Heater” is
added to the temperature control system.

SCDT divides a plant into sub-plants and assigns de-
pendent relations to them, using machine configuration
table (included in PCS requirement specification in Z
language). Based on the defined sub-plant configura-
tion, SCDT divides states, transition criteria and mo-
tion control output table for each sub-plant. Finally,

SCDT converts the created design into Z language and .

BH¥5R C, 123495, 2003 F

1579

Fig.11. Sample screen of SCDT.

output it.

4.3 Basic and Detailed Design Method for
Feedback Control Group This subsection dis-
cusses a method to create implementation designs of
feedback control group. Feedback control group cal-
culates motion control values (operational volume) and
output them to machines. The operational volume is
calculated based on the sensor values (state volume) of
the machines and its target value Y. Following tasks
should be carried out according to the above stated def-
initions.

[Basic 1 | Define the functional outline of feedback
control formula by describing calculation method with
control block diagrams such as proportional, differen-
tial and integral.

[Basic 2 ] Describe additional information regarding
operational volume and state volume which are clari-
fied through the preceding design work.

[Detail 1 | Describe detailed functions required for



Input Data
(1)Machine Table
(2)Digital Output Port Table
(3)Digutal Sensor Table
(4)Analog Output Port Table
(S)Analog Sensor Table
(6)Control formula Management Table

(7)Target Value
Table

Sensor Data (Global Data)
(1)Global digital Vanables that 1s introduced expediently
(2)Global analog vanables that is introduced expediently
(3)Global digital variables that belongs to other Machine.

(4)Global analog variables that belongs to other Machine

Fig.12. Outline of FCDT.

FCDT

Output Data.
Feedback Control (1)Divided Digital Output Port
Formula

Creation Tool

c
(2)Divided Digital Scnsor Table
(3)Global Digital Variables
(4)Local Digital Variables
(5)Divided Analog port Table
(6)Divided Analog Sensor

»

Z Language
Transformation Tool e
(7)Global Analog Variables
(8)Local Analog Variables

PCS development, such as delays, filters and satu-

ration, and add them to the control block diagrams

created in [Basic 1]. Then define data transmission
between block diagrams.

[Detail 2 | Describe the valid digits and the output
format of output volume. Those should be clarified
through the preceding design work.

We have developed Feedback Control Design Tool
(FCDT) to execute the above tasks efficiently. FCDT
is composed of two subsystems: feedback control for-
mula creation tool and 7 language transformation tool
(Fig.12). The feedback control formula creation tool is
used to create feedback control formulas. This tool sorts
the symbols that correspond to proportional , differen-
tial and integral control, and defines the input/output
data that is sent and received between the symbols.
These symbols can be describe hierarchically and then
the data consistency is checked between upper and lower
layers. The Z language transformation tool is used to
translate symbols to a feedback control formula in Z
language. As for the symbols used to create feedback
control formulas, we prepare the detailed design specifi-
cations for them in Z language. We integrate these de-

tailed design specifications for symbols and append the .

data to be sent and received between the symbols. This
procedure is how we create the detailed design specifica-
tion for the feedback control group in Z language. Fig.13
shows a sample screen to define the feedback control for-
mula by defining XRyy data that is passed from the sym-
bol ” Acceleration Calculation” to the symbol ”Position
Control”.

Based on input/output data of formal requirement
specification and motion control output formulas, FCDT
describes motion control formulas using feedback control
components (block diagrams). The block diagrams be-
come more sophisticated by detailing them repeatedly.
Finally, FCDT converts the created design into 7 lan-
guage and output it.

5. Software Components Selection Method

We have developed software components for imple-
mentation (SCI) based on the results of domain analy-
ses. As described in chapter 3 and 4, each function cor-
responds to SCR in one-to-one relation, and each SCR
corresponds to basic and detailed design specifications

1580

Froec o

[Beceratation Galeulata loen

[Position Gomtral
Ry

To v

#dd Local Dota

Fig.13. Sample screen of FCDT.

Table 3. Parameter of SCI - Extracted -.

SCI SCI Parameter Note
Name Type
Propotional Parameter | Propotional
control coeflicient
Differential Parameter | Differential
| control coefficient
Integral Parameter | Integral
control coefficient
Saturation Parameter | Saturation Cut down integral
value value by the
saturation value
Target value Parameter | target Manage target value in
pattern creation value order to fix process

in one-to-one or one-to-many relation. We have devel-
oped SCIs to correspond to detailed design specifications
in one-to-one or one-to-many relation. Therefore, each
function corresponds to SCI in one-to-one or one-to-
many relation, which enables us to implement PCS using
SCI in each functional unit. In our proposed method,
select SCI applying to detailed design specification in Z
language. And PCS are developed by combining SClIs.
5.1 Components for PCS Implementation
At first, investigate software components for implemen-
tation (hereafter, SCI) of actual PCS. Fig.2 shows full
functions that are needed for PCS. Furthermore clarify
the scope of customization for divided functions and de-
cide the parameters to customize the functions. Based
on the result, SCI is developed. Fig.14 shows sample
code of SCI, Fig.15 shows the configuration of SCI, and
Table3 shows customizing parameter that is used for
SCI. We have developed the SCI in C language. The
reason we adopt C language is to describe the bit han-
dling of input/output interfaces and its timing.
Secondly, explain about component list (shown in
Fig.16 ) that manages SCI. Component list contains in-
put/output interface information and functional classi-
fication information. The input/output interface infor-
mation is composed using argument information of SCI
provided by the authors. The input/output data and
their data types are listed in the interface information
column. The functional classification column contains
the functional outlines of SCI. Users can select this in-
formation from classification candidates and add it to

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

{int i; FILE *fp; transitable buff; char buff1[100]; stateNum = 0;
fp=fopen(inputTran§CondPath,"r"); ‘
fseek( fp, OL, SEEK_SET );
for(i=0;i>=0;i++)

{

If(EOF==fscanf( fp, "%d %s %d %s %s %s %s %os Y%s Yos Jos %os Ys %d",

&buff.carCondNum,&buff.curCondNam, &buff.nxtCondNum,

&buff.condition{0], &buff.conditionf1], ........ , &buff.condition[9],

&buff.condNum)) break;
fgets(buffl,100,fp);
stateNum = stateNuam + 1;
curtranstable[i].curCondNum =buff.curCondNum; 3
strepy (curtranstable[i].curCondNam, buff.curCondNam);
curtranstable[i].nxtCondNum = buff.nxtCondNum;

) strepy(curtranstable[i].condition[0],buff.condition[0]);
stropy(curtranstable[i].condition[1],buff.condition[1]);

strepy(curtranstable[i].condition[9],buff.condition[9]);

curtranstable[i].condlNum = buff.condNum; J
}
fclose(fp);
return O;

}

0,“START",5,

Exterior Information File of Plant
Operation

e com <o con on )

5,“Initialize Transporter”,10,“Transporter

position > 190”,“Transporter Position >

21Q7, 57,7 o7 wom cimn cin cian cinn oy

Set Exterior Information
to Active Array and

Specify
Process.

Fig.14. Sample code of SCIL.

Operational

Fig.15. Configuration of SCI.

the component list when registering SCI to the list.

5.2 SCI Selection and Combination Method
The well-known software components selection methods
are Faceted Classification ¢? and Specification Match-
ing ®®. These methods can select software components
that belongs to various domain. But they need a lot of
time to prepare search data. In our proposed method,
we adopt simplified search method restricting to PCS
domain. SCI are selected 'in the following steps (see
Fig.16):

[Step 1 | Decide best matching functional classifica-
tion for each schema in PCS detailed design specifica-

FEEFE C, 1234595, 2003 &£

1581

et N mrcacccc. IMDUt/OULDUL | cemmec e o _otate i i
Execution Control Input/Output  -------oooooomemy [ ] E xterior H Stase Indxcanoml
H Cycle H Interface H . f
Mapagement | ! nalog Output Digital Output| Engineering Command t Data Editing :
Task H Management Management Unit Transmit 1 - H
Management | | lAnalog Outpud Digital Output| Transform /Receive H Data Analysis ;
H ; — I H —
Watch Dog | | |JAnalog Output [Digital Output] Management i | |DPata Transmit| |
Loop H Driver Driver C’l? an.d : Driver H
____________________ H . TATISEILL H Data receive | |
Analog Input Digital Input Driver i Driver ‘;
Analog Input Digital Input Command b :
Driver Driver Receive
e Driver
Sequence Control |p---- Feedback Control i T N et Fault Detection and Recover =~-===""=~="3
: State H || Proportional | |_Output timing L { Common Instruction Equipment
' Management [ Control Management Inspection Test Check Value
H Creation H — Differential || Output Malfunction ROM Test Management
H Transition i Control Compensation, Code Output Equipment
H i
i| | Condition | i —  Integral L { Target Value L ! Individual RAM Test Check
i Transition H Control Pattern Inspection Output
H Check ! . ;
H H _Firxst Delay Creation Timer Test Test Data
{Second Delay| |- Accumulator Input
N Closed L juipment
- Saturation - And Circuit t;;fTCSSOp Ethll ok
[ Input Limiter | [~]_Or Circuit — EmeSrgcncy |Output Driver]
b — - -, [()p
—{ Output limiter Xor Cu‘cuxt» t | Emergency
|| Differential || Compare Stop
Limiter Check output Driver|
Switch | 7 T

tion, and match them with functional classification on
the component list. Then every SCI, which belongs to
the matched functional classification, are listed.
[Step 2 | Narrow down the candidates of SCI by
matching input/output interface on the component

list and on the detailed design specification .

This

matching uses information such as number of variables
or data types.
[Step 3 | When more than one SCI is found, all of
them are listed, and user selects an appropriate one

considering performance and data area size.

When

no SCI is found, the schema part of detailed design



SSCT
Functional Classification
Extract Tool

Functional Classification J;

Schema (Name)

SCI List :
i (Functional Classification)|

Matching Tool

¥ L Selected SC1Last 3
I/F Matching Tool
v . § Final Condudace for SCI_|_Sr Library
C List b
Funetional Input/Output o
Classification Tnterface SCLID | SC1 Name __!—L
IN ®y:int . =
Sort. OUT F:int s001 intSortl ——
rem— nisort
y )
Sort OUT F: int s002 | inlSort2
Fig.16. Outline of SSCT.

Fig. 17. Sample screen of SSCT.

specification must be reviewed.

We have developed SCI Selection and Combination
Tool (SSCT) to execute the above tasks efficiently.
Fig.16 shows the outline of SSCT. Fig.17 shows the sam-
ple screen of SSCT. Fig.17 shows selecting SCI corre-
sponding to functional classification ”output”.

6. Application and Evaluation of Inte-
grated PCS Development Environment

6.1 Outline of Experimental Systems We
evaluate effectiveness of SCR, SCI, SCDT, FCDT and
SSCT (hereafter, IPDE: Integrated PCS Development
Environment). The following sections describe the eval-
uation items for IPDE and the case examples used for
the evaluation.

6.1.1 Evaluation Items for IPDE There are
two evaluation items for IPDE: (a) the conformity to the
requirements for the PCS and (b) the efficiency of the
PCS development. We evaluate the item (a) in both soft-
ware and hardware. The conformity of software is eval-
uated based on (a-1) whether every function described
in the requirement specification is implemented in the
PCS. The conformity of hardware is evaluated based on
(a-2) whether the program size of the developed PCS
is smaller than the memory capacity and (a-3) whether
the processing time of the developed PCS is shorter than
the required control cycle. This is because we need to
develop PCSs that conform the requirements in the re-
stricted environment (usable CPU is slow and allowed
memory size is small because of the license that hard-

1582

ware can use in the space) ®. We evaluate the item (b)
based on (b-1) Code Reuse Rate (CRR) and (b-2) Time
Reduce Rate (TRR) of PCS development. The CRR is
calculated in Formula (1). LOC in the formula stands
for Lines Of Codes. Higher CRR means greater num-
ber of SCI is applied to the PCS development and is
evaluated as improvement of development efficiency.

CRR = LOC of SCI / Total LOC of PCS-- - (1)

The TRR is calculated in Formula (2). DT in the for-
mula stands for Development Time. Lower TRR means
shorter development time and is evaluated as improve-
ment of efficiency. DT is determined as the time spent
between the creation of requirement specification and
the completion of the unit test. The tests after the unit
test are not included because these tests are conducted
by implementing the PCS to the actual plant and by
operating it, which means that the difference of devel-
opment methods should not affect the development time.

TRR = DT by Proposal Method
/ DT by Newly Development

6.1.2 Case Examples Used for Evaluation of
IPDE The outline of the plants A-E as follows: The
plants A-E contain the sequence control and the feed-
back control. All of them are rather small-scale space
plants and are controlled with one 16-bits CPU.

The plant A is the thermal control plant in the space
station laboratory. This plant controls the temperature
by circulating heating fluid in the pipes set around in
the laboratory. This plant operates in the control cycle
of 125 [milli-second (msec)]. The plants B and C are the
experimental plants for semiconductor manufacturing in
an earth satellite. Each plant has a chamber for exper-
iments and manufactures semiconductors by inserting
experimental materials into the chamber and heating
them. The both plants operate in the control cycle of
100 [msec]. The plant D is the connection device with
motors to connect and release two machines. This plant
operates in the control cycle of 250 [msec]. The plant
E is the plant to generate homogeneous chemical prod-
ucts under weightless conditions and has one chamber.
It manufactures chemical products by heating, cooling
and drying the materials in the chamber. This plant
operates in the control cycle of 1 [second]. For example,
Fig.18 shows the PCS configuration of the Plant A.

6.2 Evaluation of IPDE

6.2.1 (a-1) Evaluation of the Conformity to
PCS Requirements This item evaluates whether
every function is implemented in the PCS. As described
in chapter 3, 4 and 5, there are one-to-one or one-to-
many correspondences between each function and SCR,
SCR and requirement specification, requirement speci-
fication and basic/detailed design, and detailed design
and SCI. Moreover, Z language ensures that the design
information is conveyed between them without omission.
This allows us to trace design information from each
function to SCIs, which enables us to implement ev-
ery function in the PCS. As every function is extracted

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

Execution Feedback . . Control Equipment
Control Control Analog In/Output Digital In/Output Exterior Interface Function Check
Cycle || Creation CCD Camera MIL-STD Instruction
Management Control | Transport Electric Valve CCD Camera 1553B Test
Task Target Pattern Analog Output( | Digital Quiput | [| Power Digital Command T/R ROM Test
Management Fluid Temp management management Output management €8
Watch Dog ’J Proposal CCD Camera Electric Valve Management MIL-STD
H |l RAM Test
Loop Control Transport Digital Output CCD Camera 1553B
Fluid Temp Speed = - M . Transmit
Sequence L L Electric Valve Power .- Timer Test
q Derivative Analog Qutput| H Digital Output Digital Output Driver
Control Control CCD Camera Driver CCD Camera MIL-STD I i
o A 2 > nspection
lg/l[ant/:’\ Staln: w Fl;:i 'I::lnp || Transport Electric Valve | [1 Power On/Off 155 2 B j
| z;:la el:f“ Congtrol Speed Output Status Digital Output Driver Receive Inspection
ant - Driver input CCD Camera Driver -
Creation I Fluid Tell'np TCD Camera e ctﬁ%valve a Power Malfunction
Transition SIme.grs} || Transport H Status Input Digital Input State indicator Code Output
Condition aturation Speed Analog Driver || CCD Camera — 1| Equipment Check
Plant A [T AND Circuit Input Video Power Power Status Data Editing Equipment
Transition CCD Camera | [ Digital Output Input Driver | [7T] Check Value
Check 1| OR Circuit Tl’émslf’grt Management Data Analysis Management
pee l{| Video Power i
Heater Input Driver Digital Output RS422 Data || Bauipment
1gital Outpu Transmit Check Ouiput
Voltage Heater Power Vids H
Output Limiter M Anal 1ceo power Driver Equipment
: nalog Outpui OL-II.let Driver RS422 Dala [l Check Test
1l Heater 1 Heater Video Power Receive Data Input
Cun‘eﬁt . Voltage. Status Digital n Driver Equipment
Oultput Limiter Output‘Drwer Input Filtering Engi . N Check output
Measured Heater Current Video Power Eloctic Valve ngineering Driver
4 M Analog Output Unit Transform
) Temp nalog p Status Input Open/Close I St
1 Dela: | | Heater Current Driver Check CCD Camera mergency Stop
Ouiput Driver Video Power Transport || Emergency
Fluid Temp O/OLT Check Speed E/U Stop
[ Analog Input Transform Emergency
n CCD Camera Fluid Temp s o
U Fluid Temp = Stop Output
Input Driver Power On/Off E/U Driver
P a Check Transform
Fig. 18. PCS Configuration.
Table 4. List of SCI program size.
SCI Group SCI Name Size[byte] SCI Group SCI Name Size[byte]
Execution Cycle Management 207 input/output Analog Output Management 259
Control Task Management 172 Analog Output 151
Watch Dog Loop 48 Analog Output Driver 87(Average)
Sequence State Management 774 Analog Input 148
Control Creation Transition creation 520 Analog Input Driver 102(Average)
Transition Check 234 Digital Output Management 227
Feedback Proportional Control 121 Digital Output 131
Control Differential Control 515 Digital Output Driver 95(Average)
Integral Control 859 Digital Input 109
First Delay 51 Digital Input Driver 92(Average)
Second Delay 76 Exterior Engineering Unit Transform 530
Saturation 261 Interface Command Transmit/Receive Management G692
Input Limiter 177 Command Transmit Driver 152(Average)
Output Limiter 152 Fault Command Receive Driver 181(Average)
Differential Limiter 220 Detection Common Inspection 654
Switch 103 and Recover Malfunction Code Output 194
Output timing Management 1045 Individual Inspection 318
Qutput Comparison 135 Emergency Stop 336
Target Value Pattern Creation 891 Emergency Stop Driver 120(Average)
Accumulator 157 Instruction Test 145
And Circuit 32 ROM Test 90
Or Circuit 37 RAM Test 128
Xor Circuit 50 Timer Test 60
Compare Check 122 Close Loop Test 80
State Data Editing 651 Machine Check Value Management 127
indication Data Analysis 447 Machine Check Output 218
Data Transmit Driver 232(Average) Machine Check Test Data Input 192
Data Receive Driver 313(average) Machine Check Out Driver 97(Average)

through the creation of the prototype using SCR, we are
able to implement the PCS that conforms the require-
ment specification by combining SCIs with functional
units.

6.2.2 (a-2) Evaluation of PCS Program Size
Prediction  The evaluation item (a-1) determines
the unique SCI to be used for each function of the PCS.
The content and program size of SCI is determinate as
shown in Table4 (as the program sizes of drivers is in-

THH C, 123595, 2003 &

1583

herent in each plant, we use the average program sizes
calculated from existing plants. This is because the de-
tailed prediction is not required at the creation of re-
quirement specifications). If the compiler does not com-
press the memory, it is possible to predict the program
size of the PCS by summing up the program size of ev-
ery SCIs used. The each group of PCS, sequence control
group (S-Gr), feedback control group (F-Gr) and other
parts (fault detection and recovery), is developed inde-



Table 5. Comparison between estimated and actual program size.
Plant S-gr F-Gr Other | Esti- | Actual | Esti-
Name Number of Number of Part | mated | PGM | mated
Sub- Measure- Outputs PGM | Sub- Measure- Outputs PGM | [byte] | PGM Size | /Actual
Plants ments Size | plants ments : Size Size | [byte] [%]
analog | digital | analog | digital | [byte] analog | digital | analog | digital | [byte] [byte]
A 1 8 8 4 6 8632 1 8 8 6 4 11867 | 2567 | 23066 | 21156 109
B 2 20 12 8 8 16876 1 8 4 8 6 11651 | 2567 | 31094 | 28506 109
(0] 1 12 8 8 4 9206 4 20 24 16 18 44149 | 2567 | 55922 | 52512 106
D 1 8 8 6 6 8822 1 12 12 8 6 12835 | 2567 | 24224 | 22860 105
B 3 24 20 28 16 26834 2 16 16 8 10 23269 | 2567 | 52670 | 47808 110
Table 6. Execution time - instruction type -.
Operation Gr. | Movement Gr. | Comparison Gr. | Divergence Gr. | Stack Gr. | IO Gr. | Interruption Gr.
Needed Clocks 5 5 6 22 20 20 80
Execution Time [micro-sec] 1.25 1.25 1.5 5.5 5.0 5.0 20.0
Table 7. Execution time - instruction type -.
Plant | Operation | Movement | Comparison | Divergence | Stack | IO | Interruption executed Estimated Actual Control
Name Gr. Gr. Gr. Gr. Gr. Gr. Gr. instructions execution execution Cycle
per control cycle | time[mili-sec] | time[mili-sec] | [mili-sec]
A 7535 8733 . 4198 6444 6554 | 1453 651 35648 0.12 0.13 0.25
B 5931 6822 4699 3332 3688 | 983" 258 25714 0.07 0.08 0.125
C 8725 8481 8518 8311 5481 | 1008 594 41118 0.12 0.11 0.5
D 7537 7783 2678 2678 6584 | 2019 872 31833 0.10 0.10 0.5
E 8092 7165 8766 8766 8361 | 2366 866 42133 0.15 0.16 1.0
Table 8. Result of SCI reuse rate.
Plant | Sequence Control Gr. | Feedback Control Gr. | Other Part | SCI Total | Total LOC | CRR
Name | SCI Coding SCI Coding SCI | Coding | [LOC] [LOC] [%]
A 4598 2611 2388 897 449 105 7435 11048 66.5
B 3204 2027 1454 731 449 89 4927 7774 63.5
C 2122 1398 6126 3201 449 465 8697 13761 67.1
D 2476 1225 2596 1437 449 282 5521 8465 65.2
E 5992 3491 3634 1558 449 303 10075 15427 65.3
Table 9. Result of Development Time.
Plant Name Requirement Specification | Basic and Detaied | Programming Time | Verification Time | Total Time | TRR
Creating time [Hours] Design Time [Hours] [Hours] [Hours] [Hours] [%)]
A IDPE 28 62 67 65 222 40.0
newly development 75 136 176 161 548
B IDPE 22 40 58 43 163 40.5
newly development 61 92 141 102 396
C IDPE 35 81 71 80 323 44.9
newly development 118 172 252 178 720
D IDPE 19 41 51 52 163 42.1
newly development 55 80 135 117 387
E IDPE 42 92 88 93 315 41.9
newly development 134 180 233 204 751

pendently. Therefore, the program size of the PCS is
sum total of the ones of the all groups. Tableb shows
the result of program size prediction for the plant A-E.

S-Gr consists of five SCI groups: sequence control,
execution control, input/output, exterior interface and
state indication. We newly develop analog and digital
input/output drivers in the input/output SCI group be-
cause they depend on the hardware interface of the con-
trol device. These drivers should be developed for each
measurement -since the input/output ports and the in-
terface operation timing defined in the drivers depend
on the hardware. S-Gr includes the customizing param-
eters such as the state management data of plant motion

1584

and the analog/digital output value, however we ignore
them because their sizes are rather small in compari-
son with the ones of SCIs. Consequently, the types and
the number of SCIs used in S-Gr are: one each for ex-
ecution control, exterior interface and state indication;
the number of sub-plants of S-Gr for sequence control
group; the number of output points for analog/digital
output managements, outputs and output drivers in in-
put/output group; and the number of measurements for
analog/digital inputs and input drivers in input/output
group. At the implementation of PCS, we need to add
and modify the codes for the functions that are not cov-
ered with SCI. However, we do not consider the change

IEEJ Trans. EIS, Vol.123, No.9, 2003



Efficient Development of Plant Control Software

in program size through the addition and the modifica-
tion because we have found from the development ex-
periences that the size of added and modified codes is
nearly equal to the size of deleted codes. Table5 shows
the predicted program sizes of S-Gr.

F-Gr consists of five SCI groups: feedback control,
execution control, input/output, exterior interface, and
state indication. We deal with the analog and digital
input/output drivers in the input/output SCI group in
the same manner as S-Gr. F-Gr includes the parame-
ters to customize feedback control, however we ignore
them because their sizes are rather small in compari-
son with the ones of SCIs. Consequently, the types and
the number of SCIs used in F-Gr are: one each for ex-
ecution control, exterior interface and state indication;
the number of sub-plants of F-Gr for feedback control
group; the number of output points for analog/digital
output managements, outputs and output drivers in in-
put/output group; and the number of measurements for
analog/digital inputs and input drivers in input/output
group. We do not consider the change in program size
through the addition and the modification for the same
reason as S-Gr. Tableb shows the predicted program
sizes of F-Gr.

‘The other part consists of the SCI groups for fault
detection and recovery. When a fault arises, the entire
plant must be secured. Therefore, the fault detection
and recovery processes must be considered for the entire
plant. We newly develop the device check output drivers
and the emergency stop output drivers since-their func-
tions depend on the hardware interface of the control
device. And the individual check functions should be
developed for each plant. The other functions are im-
plemented with SCI, and therefore they are included in
the fault detection and recovery group used in the other
parts. As the program sizes of the device check out-
put drivers, the emergency stop output drivers and the
individual checks are unknown at the creation of require-
ment specifications, we again use the average program
sizes calculated from existing plants. This is because
the detailed prediction is not required at this stage. We
use the program sizes of SCIs for the other parts. Con-
sequently, the program size of the fault detection‘and
recovery is the steady value of 2567 [byte].

As shown in Table5, the predicted value for the pro-
gram size of PCS using IPDE is approximately 10[%]
larger that the actual size. This is because some SCls
can be commonly used in multiple sub-plants and the
actual number of SCIs is smaller than the prediction.
This small error should be accepted as for the predic-
tion at the initial stage of development. As a result of
applying IPDE, we are now able to predict the program
size of PCS at the initial stage of development. This
should reduce the cases that PCS cannot be installed
in the memory of control device and the modification is
required in large scale after the completion of develop-
ment, which severely affect the cost and the period of
PCS developments.

6.2.3 (a-3) Evaluation of PCS Processing
Time  As described in (a-2), IPDE allows us to spec-

BHFHC, 123495, 2003 F

1585

Fan out

Fig.19. Actual executed instructions.

ify the SCIs to be used. As shown in 19, expand-
ing the repeated processes in the SCIs enables us to
grasp the entire codes executed within the control cy-
cle of PCS. These codes can be classified into instruc-
tion types. Then the approximate processing time can
be predicted by counting the number of each instruction
type and multiplying it with its processing time. In the
case of high-level languages, the processing time of each
instruction type highly depend on the performance of
compliers. We therefore compile the SCIs into assem-
bler and classify the codes into instruction types such
as Operation (SUB, ADD etc.), Movement (MOV etc.),
Comparison (CMP etc.), Divergence (JNP etc.), Stack
(PUSH, POP etc.), IO (IN, OUT etc.), and Interruption
(INT, IRET etc.). We calculate the processing time for
each instruction type of assembler level based on the
operating clock of the control device and the number of
clocks required for each instruction type. We assume the
operating clock of the CPU as 4]MHz]. Table6 shows the
processing time of each instruction type. Table7 shows
the predicted and actual processing time of the PCSs.
As shown in Table6, the error between the predicted and
actual processing time is approximately 10[%]. We con-
sider that this error mainly caused by the grouping of in-
structions. However, this small error should be accepted
as for the prediction at the creation stage of requirement
specifications. As a result of applying IPDE, we are now
able to predict the processing time of PCS at the initial
stage of development. This should reduce the cases that
the processes do not completed within the control cy-
cle ,and the modification is required in large scale after
the completion of development, which severely affect the
cost and the period of PCS developments.

6.2.4 (b-1) Evaluation of SCI Reuse Rate  In
the conventional methods to newly develop PCSs, the
source codes are reused mainly in calculating modules,
and their reuse rates are only around 10[%]. Table8
shows the CRRs in the developments of the plants A-E
using IPDE. The average CRR goes up to 65.5[%], which
is a significant improvement from the conventional meth-
ods. Applying IPDE enables us to implement most of
the parts of PCSs using SCIs (the exceptions are in-
put/output drivers, and fault detection and recovery
functions that are inherent in each plant). As a result
of applying IPDE, we have succeeded to reduce newly



written codes on PCS developments, and consequently
we have reduced the development costs and shortened
the development periods. If we develop SCls for fre-
quently used input/output drivers such as RS422, MIL-
STD1553B and ARINC429, we will be able to improve
the CRR and it should results in smaller development
costs and shorter development periods.

6.2.5 (b-2) Evaluation of Development Time
Reduce Rate (TRR)  Table9 shows the compari-
son of development time between proposed method us-
ing IPDE and the conventional methods. As described
earlier, we define the development time as the time spent
between the creation of requirement specification and
the completion of the unit test for PCS. The experiment
subjects are the novice developers with two to three year
experiences. As shown in Table9, the average TRR is
42.1[%). We analyze this figure resulted from the facts
that: (1)requirement specifications can be created effi-
cilently by showing the operation of the prototype to the
users, (2)standardization of design methods reduces trial
and error at the basic and detailed design phases, and
(3)using SCTs reduces the newly developed codes at the
programming phase. As the results of above-mentioned
evaluations, we confirm that applying IPDE to PCS de-
velopments reduces costs and time for developing PCSs.

7. Conclusion and Future Work

This paper proposed IPDE. As the results of applying
IPDE to actual PCS developments, it become possible
to: (L)develop PCSs that fully satisfy the requirements,
(2)predict the program size and processing time within
10[%] error, (3)improve the software reuse rate of pre-
defined SCI up to 66.5[%] and (4)cut down the develop-
ment time to 42.1[%]| in comparison with conventional
methods. We expect that the efficiency of PCS devel-
opments can be further improved by reinforcing SCI li-
braries.

Acknowledgement

A part of this research was supported by New En-
ergy and Industrial Technology Development Organiza-
tion (NEDO) under contract “Basic Technology for Next
Generation Transportation System Design”. The author
wishes to acknowledge all those involed.

(Manuscript received Nov. 29, 2001,

revised April 1, 2003)

References

D’Souza D. F. and Willis A. C.: “Objects, Components and
Framework with UML: The CATALYSIS Approach”, Addison
Wesley (1999)

J. Karl-Heinz and M. Tiegelkamp: “IEC61131-3 Programming
Industrial Automation Systems: Cncepys and Programming
Languages, Requirement for Programming Systems, AIDS to
Decision-Mark”, Springer Verlag (2001)

M. Matsumoto et.al.: “Specifications reuse process modeling
and CASE study-based Evaluations”, COMPSAC91 Proc. of
the 15’th annual international computer software & appli-
cations (1991)

National Space Development Agency of Japan: “NASDA
Parts Application Standard”, NASDA-HDBK-4 (NASDA-CR-~
78602) (1992) (In Japanese)

(2)

(3)

1586

(5) National Space Development Agency of Japan: “NASDA De-
. sign Standard Software Design Standard”, NDC-1-9-1 (1996)
(In Japanese) .
M. Natori, A. Kagaya and S. Honiden: “Reuse of Require-
" ments Specification Based on Domain Analysis”, Infora-
mation Processing Society of Japan, Vol.37(3) (1996) (In
Japanese)
M. Takahashi and K. Tsuda: “The Efficient Method of Plant
Software Requirements Definiton”, Inforamation Processing
Society of Japan, Vol.42(2) (2001) (In Japanese)
A. Norcliffe and G. Slater: “Mathematics of Software Con-
struction”, Ellis Horwood (1991)
M. Kawakita, M. Sakai, S. Yamamoto and K. Agusa: “A
Model for Reuse Based on Formal Specifications”, Infora-
mation Processing Society of Japan, Vol.36(5) (1995) (In
Japanese)
H. Kobayasi, Y. Kawata, N. Mackawa, A. Kawasaki, A. Yabu
and K. Onogawa: “Modeling External Objects of Process Con-
trol System in Executable Specifications”, Inforamation Pro-
cessing Society of Japan, Vol.35(7) (1994) (In Japanese)
S. Teshima, Y. Inamori and K. Agusa: “EFS Program Model
for Embedded Real-Time System and EFS-Based CAE Tool
Schetch”, Electric Inforamation Comunication Society of
Japan, Vol.37(8) (1997) (In Japanese)
R. Prito-Diatz: “Implementing Faceted Classification for Soft-
ware Reuse”, Communications of ACM, Vol.34(5) (1991)
J. Jeng and B. Cheng: “Specification Matching for Sotware
Reuse: A Foundation”, In Proc. Software Engineering and
Knowledge Engineering, Vol.2(4), pp.523-546 (1992)

(6)

(7)

(8)
(9)

(10)
(1)

(12)

(13)

Masakazu Takahashi (Member) in 1988 from Rikkyo Uni-

. versity, Japan, his MA degree in 1998 and
Ph.D. degree in 2001, both in Systems Man-
agement from University of Tsukuba, Japan.
Since 1988, he has been with Ishikawajima-
Harima Heavy Industries Co., Ltd. Currently
assigned to a subsidiary of THI, Galaxy Ex-
press Corporation. He is a member of The
Information Processing Society of Japan, The
Society of Instrument and Control Engineers.

Kazuhiko Tsuda (Member) He received his BA degree in

. 1986 and Ph. D. degree in 1994, both in
engineering and from Tokushima University,
Japan. He was with Mitsubishi Electric Cor-
poration during 1986 and 1990, and with Sum-
itomo Metal Industries Ltd. during 1991 and
1998. He is an assistant professor in Graduate
School of Systems Management, University of
Tsukuba, Tokyo, Japan since 1998. His re-
search interests include natural language pro-
cessing, database, and human-computer interaction. He is a mem-
ber of The Information Processing Society of Japan and The In-
stitute of Electronics, Information and Communication Engineers.

IEEJ Trans. EIS, Vol.123, No.9, 2003



