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Genetic algorithms are often well suited for optimization problems because of their parallel searching and
evolutionary ability. Crossover and mutation are believed to be the main exploration operators. In this
paper, we focus on how crossover and mutation work in binary-coded genetic algorithm and investigate their
effects on bit’s frequency of population. According to the analysis of equilibrium of crossover, we can see
the bit-based simulated crossover (BSC) is strong crossover method. Furthermore, to increase robustness
of binary-coded genetic algorithm, multi-generation inheritance evolutionary strategy(MGIS) was proposed.
Simulation results demonstrate the effectiveness of the proposed method.
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1. Introduction

Genetic algorithm (GA) is a random searching method
with some special features. One feature is.that GAs are
versatile evolutionary computation techniques largely
based on the principle of survival of the fittest . An-
other is the genetic operators such as crossover and mu-
tation. Because of the randomness of genetic operators,
GA can not always get good solutions.

In GA, the crossover and mutation are believed to be
the main exploration operators in the working of genetic
algorithms (GAs) as an optimization tool ®. Crossover
methods can be separated into many categories. One
kind of them is point crossover such as single-point
crossover, multi-point crossover and uniform crossover
® ., Another is probabilistic crossover methods such
as bit-based simulated crossover (BSC) ¥, population-
based incremental learning (PBIL) ®, compact genetic
algorithm (cGA)‘® and so on. In point crossover, the
children are produced by combining parent and inherit
some “building block” from the parent, while, in prob-
abilistic crossover, the children are produced by a bit’s
frequency string determined by parent population and
don’t inherit “building blocks” from the parent popula-
tion. In this paper, we investigate how the mutation and
crossover work on the bit’s frequency string and formu-
late the relationship between BSC and point crossover.

Furthermore, because all message from the popula-
tion are stored in its bit’s frequency string, in order to
increase the robustness against uncertainty and search
ability of GA, multi-generation inheritance evolutionary
strategy (MGIS) (™ is proposed where the child gener-
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ation is determined not only by parent generation but
also by some previous generations.

This paper is organized as follows. Next section is
about some mathematical description used in this paper.
Section 3. show how mutation works on the bit’s fre-
quency string in GA and section 4. show how crossover
works in GA and formulate the relationship between
point crossover and BSC. Section 5. introduces MGIS
and section 6. give some experiment results. The last
section offers concluding remarks and future perspec-
tives.

2. Mathematical Description

The GA studied in this paper is the one similar to
Simple Genetic Algorithm defined in ®.

A k th binary individual X in a population can be
given by

L
N %

)

where L is the length of the binary individual, :c?c stands

for the j th bit of the k th individual. A population X
can be defined as

(L J
Xk—(ftk,...,.’l’:k,..

X=X, Xp,...

where N is the population size. The feasible space of bit
7, is {0, 1}. The feasible space S of the individual X
is {0,1}". The feasible population space is S .

Let f;(; be the j th bit’s frequency of the population

X, where

The feasible space Sy of f;z is [0,1]. The bit’s fre-
quency string F'g can be given by

Fe=(fg s For s IR,
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Fig.1. Mechanism of mutation in Fg.
where the feasible space S/’:‘ of the bit’s frequency string
is [0,1]%. Generally, the bit’s frequency string Fy can
be seen as the gravity center of the population X.

3. Mutation Operator

The mutation operator is a force Ty, (a vector quan-
tity) to maintain the diversity in the population and is
used with a small probability, p,,. To give the direc-
tion and strength of the mutation force, we describe the
population X onto the plane, for example, ( f;?, f;? Jists
plane shown in Fig.1, where f)’? and f% are the lateral
and vertical coordinates. In Fig.1, Fi% is the two dimen-
sional point of Fy s (where Fy5 = (0.5,...,0.5)), F;g is
the two dimensional point of Fig, 77 is the two dimen-
sional vector quantity of 7,,, on the plane ( f%, fﬁz), T
and T7, are the component quantities of 7}, on the f}
and f;? coordinates, respectively. We can easily give T¢,
and T, as follows,

i = Ne=n — Net=o
N

_ Nwi=1) = Nw=o)

N N

where p,, is the mutation rate, and N(4) is the num-

DPm;,

T,

mo

ber of individuals of the population X where z° or
/ are equal to 0 or 1, therefore Niyi—1) + Npg) =
Ni=1) + N@gi—gy = N. So we can easily give the
strength of T/ as follows,
N(zi=1) — Nzi=g) )2
N
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where F;Z]Fg_{r) is a vector from the point F ;2'] to Fpl,
|F'4 Fyls| is the length of the vector FJFp’;. The direc-
tion of T can be easily demonstrated to be the same

as the direction of the vector /2 Fp’;. Generally, we can
easily give the strength of T, as follows,

‘Tml =2 IF_;'(‘FO.SI DPm,

where |F'zFy 5| is the distance between point F'g and
Fy5. The direction of T}, is from point F'g to Fys.

According to Eq.(5), we can see mutation operator can
change the bit’s frequency string, where the strength of
the mutation force is changed proportionally along with
the convergence status (represented by |F'; Fp 5|) of the
population and the direction of the mutation force is
always from the point Fg to Fy 5.

4. Crossover Operator

The crossover operator T is a very complex operator
to recombine the gene of each individual in the popu-
lation. There exist a number of crossover operators in
the GA literature. One kind of them is point crossover
such as single-point crossover, multi-point crossover and
uniform crossover. Another kind of them is probabilis-
tic crossover such as BSC, PBIL, cGA and so on. To
understand how crossover works in GA, let us review
multi-point crossover and BSC at first.

(1) Multi-point crossover is a kind of classic

crossover method. In multi-point crossover, two
parent strings are cut at several random sites. For

“example, a two-point crossover can be looked like
as follows,

parent 11|11]11 child 110011
parent 00|00]00 child 001100

Although point crossover can cause shuffling of
the gene in population, it don’t change bit’s fre-
quency string of the population.

BSC uses the bit’s frequency string of the parent
population to generate the offspring using follow-
ing two steps, . '

e According to the Eq.(3), compute the '
bit’s frequency (f',...,f7,...,fF) from
parent population.

Sample child individuals where j th bit
of individual is generated by using f7.

4.1 Egquilibrium of Crossover Before investi-
gate the relationship between BSC and point crossover,
let us see some definition as follows.

Definition (Equilibrium of crossover) When point
crossover doesn’t change the distribution probability of
the population, we say the population is at the state of
equilibrium of crossover. In other words, the population
before point crossover and after point crossover have the
same distribution probability. '

Theorem 1 A population which is produced by using
BSC is at the state of equilibrium of crossover.

(2)
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Proof: First, when using BSC, the population X
should be distributed with following probability,

L
Plot, oo, gy = Hsz ..................... (6)
j=1
where
% if 2 =1
Iz = .
1-— f% ifzl =0
and P19, o0y is the probability that the individual
(zt,...,27,..., ") is produced.

If we descrlbe the population X onto the (f’ f- Visti

plane shown in Fig.1, Eq.(6) should be represented as
follows,

Ploizi) =

Second, when using pomt crossover, if we describe the
population X onto the ( fX)Z;éj plane shown in Fig.1,
we can see

¢ 00 and 01 can create 01 and 00;

- # 00 and 10 can create 10 and 00;

¢ 00 and 11 can create 10 and 01;

® 01 and 10 can create 11 and 00;

¢ (01 and 11 can create 11 and 01;

¢ 10 and 11 can create 10 and 11.

Notably, only “00 and 11”7, “10 and 01” can produce new
individuals while others don t produce new individuals.
If a population X is not changed by the point crossover,
it means that the number of individuals at 00, 01, 10
and 11 should be maintained stably. Because only “00
and 117, “10 and 01” can produce new individuals, we
can get the following relationship,

Nooy Nay _ Ny Nao)

Nl A e 8)
where N( * %) is the number of individuals at (xx),
* € {0,1}.

Furthermore, the distribution of the populatlon should
satisfy the follovvlng functions,
N1y + Naoy = Nf;'?,
Ny + Ny = Nf;"c‘a
N(OO) + N(Ol) + N(lO) + N(ll) =N

We can obtain the solution of Eq.(8) and Eq.(9) as fol-
lows,

Nay = Nf”;fﬁz,
Ny = N(1 - f%) ;7
Naoy = f)—g(l - f;z%
Nooy = N(1 = f)(1 = f%).
Thus, the solution can be represented by
N(;\;w  Ff (10)
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Supposing N sufficiently large, Eq.(7) and Eq.(10) are
the same and the proof is completed.

According to theorem 1, we can see BSC is equiva-
lent to applying point crossover d times where d — oco.
In other words, the evolutionary process by using BSC
should be stabler than by using point crossover because
it can decrease the randomness of point crossover oper-
ator.

Another advantage by using BSC is that it has the
chance to create more candidate solutions than point
crossover. Furthermore, because all messages from the
environment are stored in the bit’s frequency, some-
times, it is very useful to use the BSC in order to de-
crease the memory required for calculation like PBIL.

In BSC, each bit of individuals is generated indepen-
dently, so the correlation of the gene which is produced
by using the Building Block Hypothesis® is ignored.
Sometimes, it caused some difficulties in evolutionary
process. '

5. Multi—Generation Inheritance Evolu-
tionary Strategy (MGIS)

5.1 Description of MGIS The basic structure
of genetic algorithm by using BSC is shown in Fig.2.
In BSC, the bit’s frequency of child population is only
determined by parent population. In order to increase
the robustness against uncertainty and search ability of
GA, MGIS is proposed where the bit’s frequency string
of child population is determined by many previous gen-
eration. Thus, the bit’s frequency string F'y (t4m) of the
t + m th generation is given by,

E X (t+m)

f]

L
X(t+m) fX'(t+m))’
m =1,2,3,...,

gl
=(f X (t+m)
where

START

Sampling N times

Sufficient
Iteration

MutIltion = tzl)
STOP ' Selection

Calculation of
the bit’s frequency

Fig.2. Structure of a simple GA by using BSC.



m—1
L iy i
= ( X' (t4+m— 1)+ Zo fX(t+i))'(1l)

J
X@t+m)  m41

X is the population before selection and X' is the pop-

ulation after selection. f7, means the j th bit

H—m 1)
frequency of the population X' att+m—1th genera-
tion. Eq.11 means the bit’s frequency string at ¢t -+m th
generation is determined not only by the bit’s frequency
string F'y, (t+m—1) but also by the bit’s frequency string
from ¢ th to ¢ + m — 1 th generation.

5.2 Reason of Robustness To investigate the
effects of MGIS, let us see a special case where m = 1.
If m =1, Eq.11 can be described as follows,

J
ft+1__

Eq.12 is a recursion formula and can be easily con-
verted into as follows,

) 1 . : 1
J =gl — . 7,
ft+1 - D) )E’(t) 22 fX”(t—l) + = 2t X’(l)
1 .
+ ? f ................................ (13)

According to Eq.13, we can see the effects from the
first generation to ¢ th generation on ¢ 4 1 th genera-
tion. This is the reason why MGIS can make GA search
for solutions more robust against uncertainty than “con-
ventional” GA. When m > 2, the relationship between
ft+m and (fX e /1)’ 1) is a little difficult

to represent.

(ttm—1)

6. Experiments

6.1 Test Function Generalized Schwefel’s Prob-
lem which was examined in ® @9 is used in our experi-
mental studies.

K
min f(z) = — Y (wesin(y/[z:)
=1
where K =1,2,...,30

—500 < z; < 500

This function is a multimodal function with many
local minima, where the number of local minima in-
creases exponentially as the dimension of the function
increases like 7%. The global minimal function’s value
is K x 418.98289. Fig.3 shows the two-dimensional ver-
sion of f.
6.2 Parameter Values
® Population size: Since the problem dimensions are
high, we choose a moderate population size N=200;

® Representation: Each variable has 30 bits, so the
length L of the individuals is 30 x K.

e Crossover rate: We set crossover rate 1.0 and 0.5 for
“the uniform crossover method respectively.

® Mutation probability: We choose p,, = %

® Selection pressure: We use the nonlinear ranking
method ® where the selection probability of k£ th
individual can be calculated by pr, = ¢ x (1 —¢)* 1,

100
200 ¢!
300400255500

Fig.3. The two-dimensional version of f
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Fig.5. The convergence status by using uniform
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1 is the rank of &k th individual. We set the param-
eter ¢ = 0.05.

e [teration: The stopping generation is |50 x VK +
0.5] because |FgFys| is changed proportionally
along with v/K, where | | means taking round-off
number.

6.3 Discussions

runs by using

¢ uniform crossover where the crossover rate is 0.5 and
1.0,

* BSC,

® MGIS where m = 1 and m = 2,

from K =1 to K = 30 and recorded 1)mean function
value (the mean value of the best individual of the last
generation over 50 runs) and 2)the standard deviation of
function value (the standard deviation of the best indi-
vidual of the last generation over 50 runs). Fig.4 shows
the simulation results. The upper part shows the mean
function value f where the lateral coordinate is the di-
mension of the test function, while the lower part shows
the standard deviation of the function value o¢. They
can be calculated as follows:

1 0
f—og

We performed 50 independent

NI*’*

Comparing the experiment result of BSC, uniform
crossover with crossover rate 0.5 and 1.0, we can
see when the dimension of the function is large, the
mean function value of BSC is smaller than the uni-
form crossover with crossover rate 1.0, followed by the
uniform crossover with crossover rate 0.5. It means
that BSC has higher search ability than the uniform
crossover. The reason is because BSC has the chance to
create more candidate solutions than uniform crossover.
The standard deviation of BSC is a little smaller than
that of the uniform crossover and the standard devi-
ation of the uniform crossover with 1.0 crossover rate
is smaller than that of the uniform crossover with 0.5
crossover rate. It means that BSC can increase the ro-
bustness of GA against uncertainty. The reason is that
BSC can decrease the randomness of point crossover op-
erator.

Next, let us see the experiment results of MGIS with
m = 1 and m = 2. We can see the mean function value
and the standard deviation of MGIS are smaller than
those of BSC and uniform crossover. It means MGIS
can increase the search ability and robustness against
uncertainty of GA. Comparing m = 1 and m = 2, we
can see the mean function value and the standard devia-
tion of m = 2 are smaller than those of m = 1. It means
the increase of m can make GA search for solutions more
robust.

Fig.5 shows the simulation results of the convergence
speed where the number of function’s dimension K is
20. In Fig.5, the lateral coordinate is the number of
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generation and the vertical coordinate is {FgFp5|. Ac-
cording to the simulation results, we see that the order
of the convergence speed from low to high is MGIS with
m = 2, MGIS with m = 1, BSC, uniform crossover
with 1.0 crossover rate and uniform crossover with 0.5
crossover rate.

7. Conclusion

In this paper, we focus on how the crossover and mu-
tation work in GA based on the variance of the bit’s
frequency. Based on the analysis of the equilibrium of
point crossover, we can find BSC is equivalent to ap-
plying point crossover d times where d — o0o. So it can
decrease the randomness of point crossover operator and
can increase the robustness against uncertainty of GA.
Furthermore MGIS is proposed where ¢ 4+ m th genera-
tion is determined not only by ¢ 4+ m — 1 th generation
but also by generations from ¢ th to ¢ +m — 2 th. Some
experiments have clarified that MGIS can increase the
searching ability and robustness against uncertainty of
GA.
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