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At present, the most commonly used satisficing method for multi-objective linear programming (MOLP) is the goal
programming (GP) based method but this method does not always generate efficient solutions. Recently, an efficient GP-based
method, which is called reference goal programming (RGP), has been proposed. However, it is limited to only a certain target
point preference, which is too rigid. More flexible preferences such convex polyhedral preferences are preferred for many
practical problems. In this research, a satisfactory effective linear coordination method for MOLP problems with convex
polyhedral preference functions is proposed. The concept of the convex cone is used to formulate the convex polyhedral

. preference function and the existing lexicographic model of the reference point method (RPM) is integrated to ensure the
efficiency of the solution of the problem. The formulated model can be solved by existing linear programming solvers and can
find the satisfactory efficient solution. The convex polyhedral function enriches the existing preferences for efficient methods and
increases the flexibility in designing preferences for decision makers.

In some situation, it is difficult for a decision maker to state a certain desirable level for each objective function. Applying
fuzzy goal to capture the decision maker’s preferences has the advantage of allowing for vague aspirations, which can be
considered as convex polyhedral preference functions. The satisfactory efficient linear coordination method can be applied to

obtain an efficient solution, which is also close to the decision maker’s requirements.
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1.

Introduction

Fundamental to a multi-objective linear programming (MOLP)
problem is the Pareto optimal concept, which is also known as an
efficient solution or a nondominated solution. The efficient
solution of the MOLP problem is one where any improvement of
one objective function can be achieved only at the expense of
another ¢V,

All of the efficient solutions set consists of points or elements
having a simple and highly desirable property ’. However, the
efficient solutions of real-world problems are extremely numerous
and almost impossible to compare @. So, the need to consider
additional A
preference function can be used by the decision maker to reduce
the efficient solution set. Normally, the preference modeling
technique is applied to goal programming (GP) based methods @19,
which are multi-objective programming techniques using satisficing

information from the decision maker arises.

concept U Satisficing solutions may not be the efficient
solutions. This is a serious flaw of GP-based methods.

Recently, reference goal programming (RGP) 0" has been
proposed for finding the efficient solution of an MOLP problem
with certain target point preferences. This method expresses the
reference point method (RPM) 1DU2018) by GP. Tt always guarantees
the efficiency of the solution, which is different from typical GP
formulations (weighted goal programming (WGP) and minmax
GP), which do not. However, only a certain target point preference
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is considered, so this method is too rigid. Interval preference
structures, increasing in preferences, decreasing in preferences,
varying preference levels depended on the distance from the goals
or other piecewise linear preferences are more flexible . These
kinds of preference structures can be collectively called convex
polyhedral type @ preference functions, which are nonlinear
preference functions. GP with convex polyhedral preference
functions have been used for many practical problems such as
financial planning, reservoir operation, manufacturing systems,
etc PI®~CY However, it is only possible to find satisficing
solutions, which are not always efficient ‘Y129 This research
developed the satisfactory efficient method for an MOLP problem
to overcome this weakness. The convex cone concept for convex
polyhedral functions ® and the existing lexicographic RPM are
applied to develop the satisfactory efficient method, which always
ensures the efficiency of the solution and satisfies the decision
maker’s requirements. For each time of formulation, a single
solution that dominates the GP solution is produced.

For imprecise knowledge, normally fuzzy set theory has been
applied *®~62 t5 express goals or preferences for objectives. A
fuzzy goal ©® and linguistic information Y% can be used to
express an aspiration level and a concave polyhedral membership
function for allowing decision makers to represent their
information in a more direct way when he/she is unable to express
it precisely. The existing efficient method, the augmented minmax
method, has been proposed to find the efficient solution for
continuous strictly monotone decreasing membership functions
and continuous strictly monotone increasing membership
functions ®“G”_The more convenient efficient method for flexible
membership functions such as concave polyhedral membership



functions needs to be developed because the concave polyhedral
membership function can be used to represent a linear, a triangular,
or a trapezoidal membership function, and it is also possible to use
it as an approximation membership function of a concave
nonlinear membership function. Our satisfactory efficient linear
coordination method can also be applied to concave polyhedral
membership functions. The resulting solution is efficient and also
close to the decision maker’s requirements.

The remainder of this paper is divided into 3 sections. Section 2
discusses the problem model and existing methods in detail.
Section 3 gives the formulation of the satisfactory efficient
method. To illustrate the application of the method, examples for
both non-fuzzy and fuzzy situations are also included in section 4
of this paper.

2. Lexicographic Models

Consider an MOLP problem ®® with K objective functions.
The general model can be formulated as follow:

min {{£,(x), £, ®),..., fr ®]: xe 0},

where x denotes a vector of decision variables to be selected with
in the feasible set O0; x =[x, x x,|'» and f,(x) is the kth
objective function, £=1,2,.. K.
The efficient solution (a nondominated solution),
[fl(i) S, _j;{(g)]is defined to stand for the following inequalities
£ ®) = fi(x), fork=12,...K

and f,(X) < f.(x) for at least one k, x€Q

2

RPM X269 g the technique, underlying optimizing philosophy ©,
where the decision maker specifies preferences in terms of
reference levels. A scalarizing achievement function is built,
corresponding to the specified reference levels. It generates an
efficient solution to the problem. The generic scalarizing
achievement function can be lexicographically considered as the
problem in Eq.(3) “%. This equation means that the first

achievement function, g}cgg{gk(lk,yk)} is minimized and then

within the set of optimal solutions to the first function the second

X
function, Z g..,y,) is minimized.
k=1

lex min {{{2{2’;{{gk(lk’yk)}igk(lk:yk)} ‘xXe Q},

where y, denotes the mathematical expression of the kth objective,
Or = f,(x)): I, denotes reference levels, and g, ‘R25R for k=
1,2,... K, are the individual achievement functions measuring
actual achievement of the Ath objective with respect to the
The advantage of the above
lexicographic model is that it allows the decision maker to

corresponding reference level, .

generate all efficient solutions. The simplest model of g can be
modeled as a two segment piecewise linear function:

SI;(Ik —yk)’
+(yk ——lk):

Sk
where s, and s/ are the negative and positive weights
corresponding to under-achievement and over-achievement,

lf yk Sllm

gk(]khyk):{

otherwise,
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respectively.

The optimal set of the minmax aggregation alone (the first
priority in Eq. (3)) always contains the efficient solution. Thus, if
unique, the optimal solution of the minmax aggregation is efficient.
In the case of a multi-objective optimization, one of them is
efficient but some of them may not be efficient (in the case that
some goals are set too pessimistically ). This is a serious flaw
since practical problems usually have multiple optimal solutions.
To overcome this flaw, it is regularized with the weighted
aggregation (the second priority in Eq. (3)) to guarantee the
efficiency of the solution %,

Under the assumption that s; is much smaller than s, Eq. (3)
can be expressed in terms of GP implementation environment as
the following lexicographic model,

called reference goal
programming (RGP) 1319, :

J

K
lex min {[max {4 s,n, + s;pk‘} Z (—s;m, +5;p,)
I<k<X

k=1

SubjeCttO .f;:(x)-i'nk —D =F, X1, Py 207 XEQJ

where the aspiration level, 7, is also employed as the reference
level, /, and », and p, represent the Ath negative and positive
deviational variables.

'If we set r; equal to the ideal value of the corresponding %
objective for all %, then the efficiency of the solution provided by
the first priority of lexicographic model in Eq. (5) is guaranteed
and the regularization term becomes unnecessary .

Ogryczak 9 has redeemed Eq. (5), which is limited to the
assumption that ¢ <sp <5} for k=1, 2, ..., K, by adding more
priority levels of the lexicographic RGP model as follows:

Z (—S;ﬂk )7}} >

k=1

K
. N . _
lex min q| max {Skpk }v 2 :(sk Dy),max {‘ S }’
1<k<K = 1Sk<K

subject to [ ®+n, —p, =k, x,n,,p, 20, XEQ;

where s and s represent freely selected negative and positive
weights corresponding to under-achievement and
achievement, respectively.

The corresponding RGP model always guarantees the efficiency
of the solution. However, only a certain target point preference can
be used. Various preference functions, g; provide a wide modeling
environment for measuring individual achievements so the convex

over-

polyhedral preference function as shown in Fig.1, which is the
collective model for many types of preference functions is
determined.
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Fig. 1. The convex polyhedral preference function of the
kth objective.
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This convex polyhedral function be

mathematically represented by

preference can

Suly ten, Hag Sy <ay,

SV + 0, 1 ay <y <ay,,

2.,y = Sia Ve F Crgs if Dyt SV <y wherer, = s
. .
S Ve t Crgrs if Ay SV <Oy
sy, +c¢ ifa, <y <a
ks Ve T Cin» By = Ve <%p»
.......................................... (7)
where

7 1s the aspiration level which is equal to the reference level, /g,
g 18 the dth breakpoint of 2, v d=01,.. P,k=12,...
K .

s, and s* are the corresponding slopes of the line segment in the
range (ay4.;,akq) of the negative and the positive sides of 7y, d= 1,
2, ,Pyk=1,. K
Cq 1s the y-intercept of the corresponding line segment, d = 1
2,..., Pk, k= 1,..., K,

Spy> kg and Sp.0 Chgr1 aTe the corresponding slope and the y-
intercept of the line segment of the negative and the positive sides
of ay,. )

Generally, the GP for the convex polyhedral preference function
can be applied by determining each breakpoint as a goal. For a
triangular type preference function, it is not so difficult to combine
GP with the RPM, but it is difficult to use only one reference point
to model a convex polyhedral preference function, which means
that it is difficult to extend the flexibility of designing preference
functions by GP. ‘

In the next section, the satisfactory efficient linear coordination
method based on the convex cone concept is developed as an
alternative to GP. By integrating the convex cone concept with the
lexicographic RPM, one reference point is sufficient to formulate
MOLP problems with convex polyhedral preference functions.

>

>

3. Satisfactory Efficient Linear Coordination Method
for Multi-Objective Linear Programming Problems
with Convex Polyhedral Preference Functions

In this paper, we propose a satisfactory efficient linear
coordination method for solving MOLP problems with convex
polyhedral preference functions. The concepts of convex cone and
the lexicographic RPM are applied.

Convex cone: V

Bougded convex cone: Vg
&

> A, <1
d=0

Fig. 2. Convex cone V and bounded convex cone Vg
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3.1 The Concept of Convex Cone  From the concept of
convex come, it is possible to find any vector Z in the convex

cone ¥ by the following equation:

V:{z

where D , are vectors from an extreme point, E to some points on
the specified space and A, are coefficients related to each D,.
With the additional constraint,

B
> A, <1,

d=0

B
Z=3% A,D;,2;20,d=0},..F

d=0

a bounded convex cone V' can be formed within the convex cone
V. This bounded convex cone is a convex polyhedral .

The convex cone concept in Eq. (8) and Eq. (9) can be used to
form convex polyhedral preference functions in MOLP problems
by linear functions so it can be called a linear coordination
method.

3.2 Formulations of Linear Doordination Method Based
on the Convex Cone Concept In this section, an MOLP
problem with convex polyhedral preference functions is
formulated by applying the convex cone concept to form X convex
polyhedral cones of K preference functions.
polyhedral cone of the Ath preference function is shown in two-
dimensional space in Fig.3. Horizontal axis represents the kth

The convex

objective value and vertical axis represents the dissatisfaction

level. The detail discussion of the formulations by the convex

cone concept is explained in Ref 25. Given: '

Ex : the most desirable point of the th objective function, Ey = (7%,
0),k=1,2,...,K :

E . the vector from the origin (0,0) to point E, E, = [rk,O]T,

Byg: the dth breakpoint of g.(#%.¥,), By = (akd, g;d), k=

2,...,Kd=0,1,... P,

: the vector from the origin (0,0) to point By, B,, = [ak 0> & ]T,

1

>

. the normalized value of function g,(#.,y,) at By which
shows the level of dissatisfaction , k=1,2, ... ,K, d=0,1, ..,
Py,

By : the most desirable breakpoint Byq =Ey, £=1,2,....K
b, and b, : the deviational constants for the negative and
positive sides of the aspiration level, 7, on Y, axis; d =0, 1,
..,qfor b, andd= g+1, .. P.for b, k=1,2, .., K,
Pr:a point in the bounded convex polyhedral cone, £=1,2,... K
PF : the vector from the origin (0,0) to point 2,
7 - the vector from Fy to P.%, and
D,,: the vector from Ey to the breakpoint By, k=1, 2,...,K, d=0,
Dissatiifaction level g',
1 BkO 0 BkPk
{ B
oL i ¢ R S ,
Ao G, _ % BJ=B, .. Qyp, -5, Rth objective value
%0 kak
7=y,

Fig. 3. A convex polyhedral cone.



Y T
—E,, d=01..,

Dkd — gkd B, e

To find P, V¥ the kth bounded convex cone of the normalized

function, &', (7. yk) can be constructed as

{Z A ZAM kd,iﬂ%ds],/lkdzo,d:o,],...,Pk},

In Eq.(11), the convex cone concept in Eq.(8) and the additional
constraint Eq.(9) for bounding the convex cone are applied to

form a convex polyhedral preference function for the Ath objective.

Z bkdﬂ’kd + Zb

d=g+1

t
Z 8'vata
sy

wa

and, Zk = sz _Ek :

Then, the position vector of P * becomes

» Z bg g + Z byt
Lf(p )}

d=g+1
¥ is the value of yy, which is the constraint of the problem

Bf=E + (14

Z 8'va
=0

P
and g'(p,*)is the normalized value of g (r,.) at ¥ =pr,

which is the objective value of the problem.

The formulation of a convex polyhedral preference function for
a single objective function problem of the linear coordination
method can be shown as

B
min ngkd /q'kd T (15)
" d=0
a. i3 .
subjectto Jf; (x)+zbkd/lkd - Zbkd/lkd =0,
d=0 d=g+]
szd <1,
xeQ, x, 4,20,d=01,. P,
For multi-objective problems, an additive model “? and a

minmax model can be developed based on the function of the
single objective problem.

The additive model of the linear coordination method for an
MOLP problem with convex polyhedral preference functions
based on the convex cone concept (LCC) can be shown as

XK B
LCC: min zz g'kd ﬂkd’ .................................... (16)
- r=1d=0
subject to
q
J[/c(x)+zblc_d/llcd Zbkd w =T k=12, K,
d=0 d=g+1
................................ (17)
B .
Zﬂ’kd SLEA=12,. K, - (18)

d=0

x€0:x, 420, k=1,. K d=0,1,

The minmax model of the linear coordination method for an
MOLP problem based on the convex cone concept (minmax CC)
can be modeled as

minmax CC: min & B IR IT IR PN (20)
», :
subjectto & = Zg'kd YIRS TS G @1)

=0
and Eq. (17)- Eq. (19).
where o denotes a new variable.

Both of the additive and the minmax model can be applied.
However, they are based on the satisficing concept, which cannot
ensure the efficiency of solutions. In order to improve these
methods, the RPM concept is employed.

3.3  Satisfactory Efficient lLnear Coordination Method
Based on the Convex Cone Concept (ECC) Using the RPM
formulation, which always generates the efficient solutions to an
MOLP problem with certain target point preferences, and the
convex cone concept, the satisfactory efficient linear coordination
method for convex polyhedral type preference functions can be

formulated as follows.

1656

From Eq. (17), we have

7,
Y by =1 k=12, K.

d=q+1

Fo+ Y b -

g,{,.y,) of the lexicographic RPM formulation stated in Eq. (3)
can be considered as,

q Ly
&, y)=(fi(x)-1)= —Z braog + Zb;dﬂ’kd , (22)
d=0 d=g+l
with the assumption that, Z byl < Z by, . Then, the

d=q+]
lexicographic model based on the convex cone concept can be

formulated as
'“lﬂ[max( Zg‘kdﬂkd_)— ngd ’lkd) Z( Zglcd /,)'kd + ngd/llcd):l
I<k<k d=g+1 d=g+
subjectto Eq. (17)- Eq. (19).
This formulation can be used to find the satisfactory efficient
solution for MOLP problems with convex polyhedral preference

B
byl < Z b, Ay is satisfied.

d=g+1

q
functions when the assumption, Z
d=0

a 5y
Under the constraint, Y b4y, x 2 b, =0 for all & it can
d=0 d=g+1
Py

ensure that Zb,,,,/lkd and Y by, 2,; do not occur at the same time
=0 d=gtl

for all k.- This constraint does not need to be added to the
formulation model because all other constraints are linear ‘. The
problem in Eq.(23) can be solved using a modified simplex
method where b, and b, are not selected as basic variables
simultaneously. It is similar to the GP formulation that we could
be sure that in every iteration this kind of constraint would be
satisfied ®. Only the boundary solutions of the convex polyhedral
cone are considered. Then, the satisfactory efficient linear
coordination method based on the convex cone concept (ECC) for
convex polyhedral preference functions can be formulated as

IEEJ Trans. EIS, Vol. 123, No.9, 2003
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lex min
B,

3 L q X g
|:max( z 8% Ma ):Z( Z Sra)s max(—z 8 ),z (—z 8w ]'Im'):|
1ksK 4 1sksK 505 =1 40

=q k=1 d=g+1
........................................ (24)
subject to
q. B .
Fe@O+ D by = D bhy =1 k=12, K,
d=0 d=g+1

B
Sk, <Lk=12, K,

d=0
xe€Q; X, 4,20, k=1 K d=0,1,.. P

If we set r; equal to the ideal value of the corresponding &
objective for all £, then the regularization terms in the model Eq.
(24) are not necessary to guarantee the efficiency of the solution.
The model can be reduced to two priority levels.

The model in Eq. (24) can be used to find the efficient solutions
of MOLP problems with nonlinear preferences, which is more
advantageous than existing methods because it can generate the
efficient solutions (Theorem), which is close to the decision maker
requirements. The flexibility of this preference function enhances
the decision analysis of decision makers in designing the
objective’s preference functions.

Theorem

For any reference level 7, and any positive value of deviational
constants, b b7 , if (x,») is an optimal solution to the problem
of ECC, then X is an efficient solution to the multi-objective
optimization Eq. (1) with preference functions in Eq. (7).

Proof

Let (x,2) be an optimal solution to the problem of ECC.
Suppose that x is not efficient to the problem in Eq. (2) with
preference functions as in Eq. (7). It means that there exists a
vector x € ) such that

S ®<f () forall k=12, K,
and for some j (1 <j<K),
FACEACIN

in other terms,

K K
ka(x) < ka(i)
k=1 k=1

From the ECC formulation, we have

L3 _ g _
[ (@ -r = Zb;d;tkd _Z B By, -,
=0

d=g+1

;!
where, Zﬂ’kd <lk=12,...K.
d=0

The solution of the problem cannot exist in both of the negative
and the positive sides of r;, at the same time. Then, we have

Zb;dﬂ,kd X Zb;;z'ﬂ“kd SO, e (28)
d=0 d=q+]
. i .7 _ 9 —
S -1 = Zbkd/’tkd’ v—f ()= zbkdj’kd’ """"" (29)
d=gtl =0

BY¥WC, 123#%9 %, 20034
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where b, b,,>0.

By the same way,

B
Fo @ =1 = Db, 1= ()= D by

d=g+1

q
r— (X)) = Zbl;d;l‘kd'
@=0

forall k=12,...K .

(x,2) 1s a feasible solution to the problem of ECC and due to Eq.
(29) and Eq. (30) for any objective value with the convex
polyhedral preference function related to A , the following
inequalities are satisfied:

5 5 _
Zg|kd)"kd < Zg‘kd/lkd forall k=12,..K.
d=g+1 d=gq+1
q q _ '
_Zg'kdﬂ‘kd < _Zg'kdﬂ‘kd forall k=12,..K
a=0 =0
Then,
5 By .
' < A
max (d:zq;ug ) < max (dg_lg wa ) s
9 q —
— ' A < — )
glk?é( dZ:;gkd w) < 112251%( ;gkd 5a) s
K I3 ) X P L
and Z(ngd;{'kd) < Z( ngd;tkd),
w= degtl = d=gil
K q X q _
Z (_Z &'va Mea) < Z (’“Z &' Ma),

=1 a=0 =1 a=0

which contradicts optimality in Eq. (2) of (x,% ) for the problem of
ECC. Thus, x must be the efficient solution to the multi-objective
optimization Eq. (1) with preference functions in Eq. (7). 0

q B
Note that the theorem assumed Y bgdy % 2 by = 0. We
d=0 d=g+1
directly put this assumption, which is used to guarantee the proper
calculation of all deviations, into the problem model by
considering each of the linear coordination of negative vectors and
positive vectors from the reference level lexicographically. The
constraints related to this assumption can be simply omitted from
the problem.

In the case of imprecise knowledge, fuzzy approach is applied
to represent the aspiration level with respect to the linguistic
information from the decision maker, which is represented by a
membership function. The discussion about membership functions
is included in Appendix A. A concave polyhedral membership
function can be considered. Then, the formulation in Eq. (24) can
be used to solve these fuzzy optimization problems.

4. Numerical examples

In the previous section, we have introduced the satisfactory
efficient linear coordination method based on the convex cone
concept, which can solve MOLP problems with convex polyhedral
preference functions. In this section, two cases of an MOLP
problem are determined: A non-fuzzy MOLP problem and a fuzzy
MOLP problem.



4.1 A Non-Fuzzy MOLP Problem with Convex Polyhedral
Preference Functions  In order to illustrate effectiveness of the
proposed model, we compare their results with existing models,
GP-based methods (Jones and Tamiz’ s formulations ®?) on a
small example of an MOLP problem.

Consider the following optimization problem with two
objective functions with equal weights of their importance:

mlnﬁ(x) I, eI (31)
mln_fz(x) IX, et (32)
subject t0  3x, +4x, 230, e (33)
Xp DD, e (34
X > 3. e (35)

The preference functions of f1(x) and f»(x) have been defined
and shown in the following figures.

Let /; and /, represent the reference levels of objective 1 and
objective 2 accordingly.
The efficient set of this problem is

3x1+4x2 Z30,x122,x223,

ie. the entire line segment between vertices (2,6) and (6,3),
including vertices.
The WGP model for this MOLP problem becomes

. 1 1 1 1

min nz+2p3+zn5+§n7+§p7+zps,_ ------------------ (36)

subject to X, +hn,—p, = [1 B RIT IR (37)
x1+n3__p3:ll+2’ ......................... (38)
xz+n6_p6:lz“4, ......................... (39)
X, +1, — P, =[2, .............................. (40)
Xyt Hg — Py =1 44, s 4D
Eq. (33)- Eq. (35),

g\, fi(x)

0
Fig. 4. Preference function of fi(x).
8., f,(x)
1L P Py
{
i
05|~ i
0

Fig. 5. Preference function of f(x).

where 7,,pP, are the negative and the positive deviational

variables related to the point P, j=1,2,...,9.
The minmax GP model for this MOLP problem becomes

min a LTI (42)

SubjeCt to a= n, +2p3’ ......................................... (43)
1 1 1 1

azzn6+§n7+§p7+zp87 ................. (44)

Eq. (33)- Eq. (35), Eq. (37)- Eq. (41).
The linear coordination model based on the convex cone
concept (LCC) in section 3.2 for this MOLP problem becomes

min = A +A4 +A+054, 054 + A, e 45)
subject to ¥ + 4 _2}:3 =254, =1 e (46)
Ay Ay Ay ST, cooeeeeesnii s A7
X, + 645 + 40, — 44 =64y =1, e (48)
Ag+ g+ A+ Ag ST oveeeeemmssis (49)

Eq. (33) - Eq. (35).
The minmax model of the linear coordination method based on
the convex cone concept (minmax CC) in section 3.2 for this
MOLP problem becomes

TR G wooveesssessses s s (50)
Subject to a= /11 +ﬂ47 ............................................. (51)
a22’5+0'52’5+0-5/’{’8+2‘93 ...................... (52)

Eq. (33)- Eq. (35), Eq. (46)- Eq.(49).
The satisfactory effective linear coordination model based on
the convex cone concept (ECC) in Eq. (24) can formulate this
MOLP problem as follows.

max(4, 0.5 +45), (A, +0.54 + 4),
max(—A, A —0.54),(-4 — 4; = 0.54)

lex min

subject to Eq. (33)- Eq. (39), Eq. (46)- Eq.(49).

The solution results can be shown in Table 1:

Table 1 shows the optimal solutions obtained by different
methods solving by linear programming. Note that WGP, LCC
minmax GP and minmax CC have generated some of non-efficient
solutions. Their results for each aspiration vector are identical.
Only one solution in the solution ranges for the 4 aspiration
vectors ((2,5),(3,4),(4,4),(5,3)) of the 9 aspiration vectors contains
the efficient solutions, while other solutions in these ranges are
non-efficient solutions. These methods are based on the concept of
satisficing so they try to reach the desired target as much as
possible, without considering the efficiency of solutions so some
of them may not be efficient solutions. With the proposed method,
the satisfactory efficient linear coordination method based on the
convex cone concept, a single solution that dominates the GP
solution is obtained and this solution is also close to the aspiration
levels. All of the solutions obtained by this method are efficient.
This is the advantage of this method over existing MOLP methods

IEEJ Trans. EIS, Vol. 123, No.9, 2003
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Table 1. Optimal solutions from different methods solving

by linear programming.
/A WGP & LCC | Minmax GP & Proposed

minmax CC method

1,8 *12,31,8 *12,3],8 2,6
2,8 *12,4],8 *[2,4],8 2.73,5.45
2,5 1[3.33,4],5 '3.33,41,5 3.82,4.64
3,4 1[4.66,5],4 1[4.66,5],4 491,3.82
44 '[4.66,5],4 1[4.66,5],4 3.77,4.67
4,5 *[4,6],5 *[4,6],5 3,5.25
5,4 *[5,7],4 *[5,7],4 445
5,5 *[5,71,5 *[5,71,5 6,3
5,3 116,71,3 116,71,3 6,3

* Non-efficient solutions

I The solutions contain efficient solution and mnon-efficient
solutions

for convex polyhedral preference functions.

4.2 A Fuzzy MOLP Problem with Concave Polyhedral
Membership Functions In reality, decision makers may have
only vague or imprecise knowledge about trade-off relationships
among goals. So applying fuzzy set theory to goals has the
advantage of allowing for vague aspirations of decision makers,
which can be quantified by some natural language terms @ @,
Assuming that goals can be expressed by eliciting the
corresponding membership functions. Fuzzy goals are used to
define aspiration levels with respect to the linguistic terms, which
can be considered as concave polyhedral membership functions,
the degree to which these goals are obtained. In this section, the
same problem as in section 4.1 is reconsidered using fuzzy
preference functions, which are defined in Appendix A.

Given that the decision maker has expressed the following
vague aspirations: ‘

Jfi(x) is “around [/;, [,+2] but rather greater” and its importance
is “high”.

Jfo(x) is “around /,” and its importance is “low”.

Let /; and [, represent the aspiration or reference levels of
objective 1 and objective 2 accordingly and tolerance intervals of
objective 1 and objective 2 are

int; =4 and int, = 3.
Then,

Breakpoints of £i(x) are [(/;-2,0), (I,,1),(I;+2,1),(I,+3,0)].

Breakpoints of f5(x) are [(/,-1.5,0), (1,,1),({;+1.5,0)].

The concave membership functions and their inverse functions
for minimization problems can be shown as follows. In this
problem the inverse functions represent the convex polyhedral
preference functions of objectives.

The additive model for fuzzy goal programming “V becomes

2 2
min 0.57, + p, +§n6 +§p6’ ................................ (54)
subject to X 0, — Py =L e (55
Xy b Ty — Py =L H 2, e (56)
Xy Hg— Py =1, e 57

Eq. (33) - Eq. (35).
where H;, P, are the negative and positive deviational variables

related to the point P, j=1,2, ..., 7.
The minmax GP model of this problem becomes

B C, 123#%#95, 20034
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Fig. 6. The preference function of fi(x).
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Fig. 7. The preference function of f(x).

Subject to o> 05n2 T Py, e (59)
2 2
a25n6+§p67 ....................................... (60)

Eq. (33) —Eq. (35), Eq. (55) — Eq. (57).
The linear coordination model based on the convex cone
concept (LCC) for fuzzy goals becomes

min A+ A A+ A e (61)
subjectto X, +24; =24, =34, =1 e (62)
Ap A Ay ST o (63)
Xy +1.5Ag =157, =1, corvvmsrinsinnn. (64)
/15+g731’ ............................................ (65)

Eq. (33)-Eq. (35), 4,20, j=1,2, .., 7.

where 4 is the coefficient related to breakpoint P, j=1,2,...,7.
The ‘minmax model of the linear coordination based on the
convex cone concept (minmax CC) for fuzzy goals becomes

min & DR LR L L LRI (66)
subject to > /11 B P (67)
(ZZ/'LS +/17’ ............................................... (68)

Eq. (33) - Eq. (35), Eq. (62)- Eq. (65), 4, >0, j=1,2, .., 7.

The satisfactory effective linear coordination model based on
the convex cone concept (ECC) can be formulated fuzzy goals as

e i ma (21, ) (B + ) max (-4 Ao (=26 |

Eq. (33) - Eq. (35, Eq. (62)- Eq. (65),
320, j=12,..7.

subject to



Table 2. Optimal solutions from different methods solving

by linear programming.

1,1, Additive model | Minmax GP & Proposed
& LCC minmax CC method
1,8 *[2,3],8 *[2,3],8 2,6.5
2,8 *[2,4],8 *[2,4],8 2,6.5
2,5 [3.33,4],5 13.33,4],5 445
3.4 1[4.66,5],4 I[4.66,5],4 5,3.75
44 1[4.66,6],4 1[4.66,6],4 6,3
45 *[4,61,5 *[4,6],5 53335
5,4 *[5,71,4 *[5,7],4 6,3
5,5 *[5,7],5 *[5,71,5 53335
5,3 1[6,71,3 116,71,3 6,3

* Non-efficient solution

| The solutions contain efficient solution and non-efficient solutions

The solutions result comparing with existing methods can be
shown in Table 2.

Table 2 shows that the optimal solutions obtained by the
proposed method can provide all of the efficient solutions, which
are also close to the aspiration levels. Note that the additive model
of fuzzy goals, LCC, minmax GP and minmax CC have generated
some non-efficient solutions. Only one solution in the solution
ranges for 4 aspiration vectors ((2,5), (3,4), (4,4), (5,3)) of the 9
aspiration vectors contains the efficient solutions, while other
solutions in these ranges are non-efficient solutions. These
methods are based on the concept of satisficing so they try to
reach the desired target as much as possible without considering
the efficiency of solutions. With the proposed method, the
satisfactory efficient linear coordination method based on the
convex cone concept, a single solution that dominates the minmax
GP solution is obtained and this solution is also close to the
aspiration levels. All of the solutions obtained by this method are
efficient. This is the advantage of this method over existing fuzzy
MOLP methods for concave polyhedral membership functions.

5. Conclusion

The satisfactory efficient linear coordination method for convex
polyhedral preference functions of an MOLP problem is proposed
in this research. The existing efficient methods take preference
functions as a certain target point preference, which is too rigid.
Convex polyhedral preference functions are preferable. The
concept of convex cone and the existing lexicographic model of
RPM are applied to the efficient linear coordination method,
which can be easily formulated and solved by linear programming.
The solution obtained by this method is always efficient and also
close to the decision maker’s requirements. This method also
provides a better solution than the existing methods in terms of
Pareto optimality. Furthermore, the flexibility in designing
preference functions is also enbanced.

For imprecise situations, a flexible membership function, the
convex polyhedral function, can be used to represent fuzzy MOLP
membership functions stated by the decision maker. The
satisfactory efficient linear coordination method developed here
can be applied to this fuzzy MOLP problem. A satisfactory
efficient solution can be found by this method, which is also better
than the existing fuzzy MOLP methods for concave polyhedral
membership functions. '

The proposed method can use linear formulation to solve
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nonlinear preference functions in the case of both fuzzy and non-
fuzzy MOLP problems. Moreover, it can generate a single
satisfactory efficient solution for the decision maker with only one
reference point. In the future, we hope to develop this method as
an interactive approach. Also, we would like to do more work on
the application of these methods to real world situations. ‘
(Manuscript received July 16, 2002, revised April 14, 2003)
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Appendix A

For each objective of a fuzzy MOLP problem the following
linguistic term can be used.

With “around”, ©
rather less” situations, o and ¢ are the respective spreads to
right and left of 74, where r; can be a single reference membership
value or an interval reference membership value denoted by [ry,
rett]. Under “at most” situation, we allow the kth goal to be
spread to the right hand side of r, with a certain range g;
Similarly, with “at least” B is the allowed left spread of 7, as
shown in app. Fig. 1 and app. Fig. 2.

Membership functions of an aspiration level, 4, (f,(x)) of

‘around but rather greater” and “around but

[ (x) with respect to three linguistic types can be expressed as:

(Type-1: “around”, “around but rather greater”, “around but rather
less”):

0, if f,®<r,—-h -d lu,

{1 b f’f( )]uk if7, ~h, -d_ Ju, <f,(5)<r,,
H(f®)=1L lfr <f®<h +1,

2
1- [f’f(") (’” ")]vk i£7, +1, <f,()<r, 41, +h, -d7 /v,
0, 1ffk(x)>rk +t, +h,-d /v,

where uy, v € {0.5,1}, k=12,.. K,
d; ,d; are tolerance intervals on the negative and positive side of
e

If #; = 0, then the trapezoidal membership function is reduced to
the triangular membership function as shown in app. Fig. 1. #; and
v are equal to 1 for “around”, u, is equal to 0.5 and v, is equal to
1 for “around but rather grea’ter” and #; is equal to 1 and vy is
equal to 0.5 for “around but rather less”, respectively. We allow
the membership function of type-1 goals to have a different shape
of deviations simultaneously. h, are the constant values that
present the decision maker attitude towards the objective
function’s importance (“low”, “medium”, “high”). p, are
assigned to be 1 for “low” and 0.75 for “medium” and 0.5 for
“high”, respectively. A lower deviation from the desired target

Membershlp level
"around but

rather greater”

"around but
@ther

“around” a; =h,.d; /u,
ap =h.d; v,

less”

T

£00

app. Fig. 1. The membership function of type-1.

Membership level Membership level ,3,: - hk . d;
A e hd
1 ” 1 ” ”r k - hk ’ dk
”at most ' at lea/st/
0 » 0 >
r, £ f A0

k

app. Fig. 2. The membership functions of type-2 and type-3.



means a higher level of important of that objective.

(Type-2: “at most”):

il if £,(x)<r,
()= [k%} it < L)<+,
0, if fk(x)Zrk-i;d;,
....................................... (AZ)
(Type-3: “at leas.t”):
0, if f,(x)<r,—h, -d_,
1, (f, () = [1—@} if 7, —h-d; < f,(x) <7,
h, -d,
1, if 7, < £, (%),
....................................... (A3)

Breakpoints of each type of membership function in 2-
dimensional space can be summarized as:
Type-1, Byq are

l(rk —h, -d, /u,,,O), (r,,,l),(rk +tk,1), (rk +t+h,-d, /Vk,O)J,

for an interval aspiration level and if 7, is a single value the third
element is not included.
Type-2 and Type-3, Byq are

l(rk,l), (rk +hy ‘dI::O)] and l(rk —h, -d,;,Ol (rk>1)J

d;and d; can be desired by decision makers or we can desire
by tolerance interval of Zimmermann’s approach GRENCNCH With
Zimmermann’s approach, we first calculate the individual
minimum of each objective function fi(x) under given constraints.
From this calculation, the values of other objective functions also
can be found. By taking account of the calculated values,
individual mlmmum and maximum of each objective function are
selected to be f, )™ and AN . Then, the tolerance interval
can be calculated as, int, = Lo )™ = £, (%) o

In our case, we assume that the tolerance interval from
Zimmermann’s approach is assigned for each type of membership
function as follows:

Type-1 assume d; = d, =int/2,

Type-2 assume d, = int, and,

Type-3 assume d; = int,

where int, is the tolerance interval of kth objectivé, k=12,.. . K
Aspiration levels with respect to the linguistic terms can be
used to define the concave polyhedral membership functions.
These goal membership functions represent the degrees of
satisfaction at different objective levels. From the primitive
minimization problem of MOLP with convex polyhedral
preference functions, Eq. (24) is formulated. The convex
preference functions of this problem are considered as the inverse
functions the highest

satisfaction level corresponds to the lowest level of the objective

of membership functions because

value.

Busaba Phruksaphanrat ~ (Non-member) received the BS
degree in Industrial Engineering from
Thammasat University, Thailand in 1994, MS
degree in Manufacturing System Engineering
from Asian Institute of Technology, Thailand.
Presently, she is a doctoral student of Graduate
School of Engineering, Nagaoka University of
SR Tcchnology. Her research interests include linear
and nonlinear optimization, multi-objective optimization, fuzzy
system and applications of manufacturing systems.

Ario Ohsato ' (member) received the D.Eng. degree from
Department of System Science, the Tokyo
Institute of Technology in 1987. Currently, he is
a professor of Department of Management and
Information  Systems  Science, Nagaoka
University of Technology. His research areas
are system engineering, fuzzy engineering,
optimization and their applications. He is a
member of IEEJ, SICE and IFSA.

1662

IEEJ Trans. EIS, Vol. 123, No.9, 2003



