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In this paper, Principal Component Analysis (PCA) is used to reduce noise from multi-channel Visual
Evoked Potential (VEP) signals. PCA is applied to reduce noise from multi-channel VEP signals because
VEP signals are more correlated from one channel to another as compared to noise during visual perception.
Emulated VEP signals contaminated with noise are used to show the noise reduction ability of PCA. These
noise reduced VEP signals are analysed in the gamma spectral band to classify alcoholics and non-alcoholics
with a Fuzzy ARTMAP (FA) neural network. A zero phase Butterworth digital filter is used to extract
gamma band power in spectral range of 30 to 50 Hz from these noise reduced VEP signals. The results using
800 VEP signals give an average FA classification of 92.50% with the application of PCA and 83.33% without

the application of PCA.
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1. Introduction

Evoked potential is typically generated in response to
external stimulus. The application of sensory stimulus
like visually seeing a set of pictures gives rhythmic Vi-
sual Evoked Potential (VEP), which is the coupled and
coherent activity of an ensemble of neuronal generators
in the brain ®. Over the years, VEP analysis has be-
come very useful for neuropsychological studies and clin-
ical purposes ®. Specifically, the effects of alcohol on
the central nervous system of humans and genetic pre-
disposition towards alcoholism have been studied using
evoked responses 2 ),

The VEP signal is embedded in the ongoing electroen-
cephalogram (EEG) with additive noise causing diffi-
culty in detection and analysis of this signal. The tra-
ditional technique of reducing this EEG contamination
is to use ensemble averaging . However, this approach
requires many trials and the averaged signal might tend

- to smooth out. inter-trial information. Furthermore, it
leads to system complexity and higher computational
time.

In this paper, a zero phase Butterworth digital filter
is used to extract gamma band spectral power of sin-
gle trial VEP signals buried in the spontaneous EEG
activity. Our method assumes that the ratio of VEP
to EEG is higher in the gamma band range, thereby
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circumventing methods like signal averaging to improve
the VEP/EEG ratio. This assumption follows research
of single trial gamma band VEP signals used to study
stimulus specificity of visual responses in humans @, In
addition, it is reported that gamma band spectra cen-
tred at 40 Hz is evoked during the application of sensory
simulation @®. -

Principal Component Analysis (PCA) is a technique
commonly employed to reduce the dimension of the fea-
ture set . In this paper, PCA is applied to reduce noise
effects in VEP. VEP signals are more correlated from one
channel to another as compared to noise during visual
perception. As such, PCA which uses eigen analysis of
data covariance matrix can be applied to reduce noise
in VEP signals.

Parseval’s theorem is used to obtain the spectral power
of the filtered signal in time domain. Since the en-
tire computation of the features remain in time do-
main, this method is efficient than methods requiring
power spectrum computation like periodogram analy-
sis. The extracted spectral power values are used to
classify alcoholics and non-alcoholics using a simplified
Fuzzy ARTMAP (FA) neural network (NN) classifier de-
veloped by Kasuba . ‘ '

2. Noise Removal Using PCA

PCA ©® ig applied to remove noise from the VEP data.
The extracted VEP signals consist of two parts: sig-
nal and noise. Therefore, using PCA, it is possible to
separate noise from signal using the fact that the noise
subspace will constitute of principal components (PCs)
with eigenvalues chosen below a certain threshold and
eigenvalues with PCs above this threshold represent the
signal subspace. Assuming matrix = to represent the
extracted noise corrupted VEP signal, the covariance of



matrix z is computed using:

Next, matrices £ and D, are computed where F is-

the orthogonal matrix of eigenvectors of R and D is the
diagonal matrix of its eigenvalues, D = diag(dy, ..., dn)-
The PCs can now be computed using

y = ET.'L’T

In this work, Kaiser’s rule is used to give the num-
ber of required PCs®. Using this method, PCs with
eigenvalue more than 1.0 are considered to be part of
the signal subspace. The signal part of the EEG can
now be reconstructed from the selected PCs using

where F and 9 are the eigenvectors and PCs corre-
sponding to eigenvalues less than 1.0.

2.1 Simulation Study A simulation study is
conducted using emulated VEP signals contaminated
with noise. The study is used to show that PCA could
considerably reduce noise effects from the emulated VEP
signals. VEP signal is emulated using a combination of
5 randomly selected waveforms from 6 basic waveforms,
each with different frequency and amplitude. The emu-
lated VEP signals are later normalised to zero mean and
unit variance. The basic waveform equation is:

2nnf
' f s

where f is the frequency in the gamma band range
(randomly selected from 30-50 Hz), fs is the sampling
frequency (256 Hz), and A is the amplitude of the sig-
nal. The amplitude is chosen randomly in the range of
20 ~ 30 units. This variation in the amplitude and fre-
quency are to emulate the real VEP signals. Some of
the emulated VEP signals are shown in Figure 1.

The noise is constructed using whitening method,
which is as follows. EEG signals are extracted while
the subjects are at rest. These signals are first cen-
tred to remove the mean and then whitened to remove
correlation between its components and to achieve unit
variance. Assuming matrix z to represent the extracted
signal, whitening seeks to obtain noise matrix Z, where
the covariance of matrix Z equals the identity matrix:

E(izET) =1

G(n) = Asin(

A common whitening method is to use the eigen-
value decomposition of the covariance matrix E(Zz7) =
EDET, where E is the orthogonal matrix of eigenvec-
tors of E(227) and D is the diagonal matrix of its eigen-
values, D = diag(dy,...,d,). Whitening can now.be
achieved using

S ED S ET s e
Some of the whitened noise signals are shown in Figure
2. o
The VEP signal with noise artifact can now be con-
structed using
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The signal to noise ratio (SNR) for the real VEP sig-
nals vary from case to case. In general, VEP signal levels
are comparable to noise levels, i.e. around 0 dB [7, 8].
In this simulation work, the SNR of VEP signals is set
approximately to -9 dB i.e. the signal level is approxi-
mately 1/3 of the noise level. Sixty-one emulated VEP
signals contaminated with noise are created and PCA
is applied. Using Kaiser’s rule, the number of PCs to
reconstruct the data can be determined. Kaiser’s rule
is chosen because it offers a simple and automated al-
ternative. Other methods like scree graph test could be
used but this method requires manual inspection. Using
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Table 1. SNR values of VEP signals in the simu-
lation study.
SNR

Signal | Without PCA | With PCA | SNR improvement

1 -8.64 -4.35 4.29

2 -9.31 -4.27 5.04

3 -8.80 -4.27 4.52

4 -9.31 -4.73 4.58

5 -8.34 -4.17 4.16

6 -9.46 -4.35 5.11

7 -9.04 -4.35 4.69

8 -9.40 -4.64 4.76

9 -8.68 -4.35 4.33

10 -9.31 -4.51 4.80

Average -9.03 -4.40 4.63

Kaiser’s rule, the first 6 PCs are selected for reconstruc-
tion.

The first column of Figure 3 shows the emulated VEP
signals. The noise contaminated VEP signals are shown
in the second column while the third column shows the
VEP signals with noise reduced by PCA. From the fig-
ure, it be seen that PCA has considerably reduced noise
effects from the VEP signals. To further validate the
ability of PCA to reduce noise, Table 1 lists the SNR
values of noise corrupted VEP and noise reduced VEP
signals. The table also shows the SNR improvement
after using PCA, which can be seen from the, average
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values of the 10 signals given in the table. Due to space
constraints, only values from 10 randomly selected VEP
signals are given, but there are improvements in SNR
for all the 61 VEP signals. '

3. Visual Evoked Potential Data

In this section, the experimental set-up used to record
the VEP data is discussed. In addition, pre-processing
methods to remove VEP signals with eye blink artifact
and setting the pre-stimulus baseline of these signals to
zero are described. Twenty subjects participated in the
experimental study to record the VEP data that con-
sisted of 10 alcoholics and 10 non-alcoholics. The al-
coholics are non-amnesic and have been abstinent for
a minimum period of one month (through closed ward
hospitalisation) and are also off all medications for the
same period of time. Most alcoholics have been drinking
heavily for a minimum of 15 years and started drinking
at approximately 20 years of age. The non-alcoholic
subjects are not alcohol or substance abusers. '

The subjects are seated in a reclining chair located in a
sound attenuated RF shielded room. Measurements are
taken from 64 channels placed on the subject’s scalp,
which are sampled at 256 Hz. The electrode positions
(as shown in Figure 4) are located at standard sites us-

 In all the experiments in this paper, 3 channels are used as ref-
erences. Therefore, only 61 channels are used as active channels.
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Fig.6. Example of stimulus presentation.

ing extension of Standard Electrode Position Nomen-
clature, American Encephalographic Association. The
signals are band-pass filtered between 0.02 and 50 Hz
using analogue filters.

3.1 Snodgrass and Vanderwart Picture Stim-
uli The VEP data is recorded from subjects while

* being exposed to a stimulus, which is a picture of an

object chosen from Snodgrass and Vanderwart picture
set 19, These pictures are common black and white line
drawings like airplane, banana, ball, etc. executed ac-
cording to a set of rules that provide consistency of pic-
torial representation. The pictures have been standard-
ised on variables of central relevance to memory and
cognitive processing. These pictures represent different
concrete objects, which are easily named i.e. they have
definite verbal labels. Figure 5 shows some of these pic-
tures. One-second measurements after each stimulus on-
set are stored. Stimulus duration of each picture is 300
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ms with an inter-trial interval of 5100 ms. The pictures
are shown using a computer display unit located 1 meter
away from the subject’s eyes. Figure 6 shows an illustra-
tive example of the stimulus presentation. For further
details of the data collection process, refer to .

3.2 VEP Pre-Processing A common artifact
that corrupts the visual stimulus EEG data is eye blinks.
Eye blink contamination problem is solved by using a
computer program written to detect VEP signals with
magnitude under 100 mV. The VEP signals with mag-
nitudes above 100 mV are assumed to be contaminated
with eye blinks and are discarded from the experimen-
tal study and additional trials are conducted as replace-
ments. The threshold value of 100 mV is used since
blinking produces 100-200 mV potential lasting 250 mil-
liseconds . Mean from the data are removed. This is
to set the pre-stimulus baseline to zero .

4. Classification of VEP Signals

This section discusses the VEP signal classification by
Fuzzy ARTMAP (FA) into two categories: alcoholic and
non-alcoholic. The VEP feature extraction is described
before describing FA classification. The classification ex-
periments are conducted using the extracted VEP with
and without the application of PCA.

4.1 VEP Feature Extraction A total of 40 ar-
tifact free trials for each subject are used in the experi-
mental study giving a total of 800 VEP signals. A 10th
order forward and 10th order backward Butterworth dig-
ital filter (forward and backward operation to give zero
phase response) is used to extract the VEP in the 3-dB
passband of 30 to 50 Hz. Order 10 is chosen since it gives
a 30-dB minimum stopband at 25 and 55 Hz. Parseval’s
theorem can now be applied to obtain the equivalent
spectral power of the signal, Z using

N ‘
SpectralPower = % Z [ai(n)]Q .............. (8)

n=1

where N is the total number of data in the filtered
signal. The power values from each of the 61 channels

.are concatenated into one feature array representing the

particular VEP pattern. Figure 7 shows the process of
extracting features from VEP signals for the case of us-
ing PCA. The VEP feature extraction without the ap-
plication of PCA is the same as shown in Figure 7 except
that PCA is not used.

4.2 Classification These VEP feature arrays
are classified by FA into alcoholic and non-alcoholic cat-
egories. FA is chosen as compared to other NN due to
its high speed training ability in fast learning mode. FA
is a type of neural network that performs incremental
supervised learning ®. In this paper, a simplified ver-
sion of FA is used . Tt consists of a Fuzzy ART module
linked to the category layer through an Inter ART mod-
ule. During supervised learning, Fuzzy ART receives a
stream of input features representing the pattern and
the output classes in the category layer are represented
by a binary string with a value of 1 for the particu-
lar target class and values of 0 for all the rest of the

IEEJ Trans. EIS, Vol.123, No.10, 2003
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classes. Inter ART module works by increasing the vig-
ilance parameter, r of Fuzzy ART by a minimal amount
to correct a predictive error at the category layer. Pa-
rameter r calibrates the minimum confidence that Fuzzy
ART must have in an input vector in order for Fuzzy
ART to accept that category, rather than search for a
better one through an automatically controlled process
of hypothesis testing. Lower values of r enable larger
categories to form and lead to a broader generalisation
and higher code compression. For further details on FA,
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FA network as used in the study.

refer to ® ®),

Half of the patterns are used for training while the rest
half are used for testing. FA fast learning weight updates
vary with different order of input patterns during train-
ing. As such, classification performance will vary. This
problem is solved using voting strategy  with 10 runs.
FA vigilance parameter (VP) is varied from 0 to 0.9 in
steps of 0.1. Figure 8 shows the FA network architecture
as used in the experimental study.

Table 2 shows the results of FA classification with and



Table 2. FA classification results. ,
With PCA Without PCA

vP Classification (%) Training time (s) Classification (%) Training time (s)
0 91.25 5.5 80.25 7.5
0.1 . 92.50 5.5 82.50 7.5
0.2 93.50 5.6 81.50 7.5
0.3 92.00 6.1 81.75 7.0
0.4 90.75 9.1 83.50 10.2
0.5 90.25 9.3 81.00 10.7
0.6 94.50 10.1 83.75 11.1
0.7 91.25 10.6 84.50 11.6
0.8 94.75 10.2 84.25 13.3
0.9 94.25 16.7 90.25 26.8
Average 92.50 8.8 83.33 11.3

without the application of PCA for the varying VP val-
ues. From the table, it can be seen that FA classification
improves considerably with the use of PCA. This is be-
cause of PCA’s ability to remove noise from the VEP
signals. The best classification using PCA is at 94.75%
(VP=0.8) while averaged classification of 92.5% is ob-
tained across all the VP values. The case without using
PCA gives lower classification values. Best classification
is at 90.25% (VP=0.9) while averaged classification is at
83.33%. The use of PCA also reduces the FA training
time, which can be seen from the averaged time of 8.8 s
using PCA and 11.3's for without PCA. The computer
used for this simulation experiment is Pentium II 266
MMX (with 256 MB RAM), running on Windows 98
platform.

5. Conclusion

In this paper, we have applied PCA to reduce noise
from VEP signals. Emulated VEP signals contaminated
with noise have been utilised to show the ability of PCA
to reduce noise. These noise reduced VEP signals are
classified into alcoholics and non-alcoholics category us-
ing FA. Gamma band power computed from these VEP
signals are used as features by FA. The FA classification
results show improvement with the application of PCA
to reduce noise in VEP signals as compared to the case
without applying PCA. Overall, the good accuracy of
FA classification performances indicates that VEP spec-
tral power centred at 40 Hz could be used to classify
alcoholics and non-alcoholics.
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