Paper

Dynamic Scheduling of Large-scale Flow Shops
Based on Relative Priority Approach

Yang Jianhua™® Student Member
Yasutaka Fujimoto™ Member

A relative priority approach is proposed to solve dynamic scheduling problem for flow shop problem in this paper. Two
neighbor jobs’ relationship is represented by a relative priority, which implies permutation obstacle between them. An algorithm

is developed to calculate relative priority matrix on jobs and a near-optimal result can be obtained with the calculation iteration of

relative priority matrix. A printed circuit board production line, which is composed of 31 works, is used to demonstrate the

efficiency of proposed approach. It shows that an excellent final sequence can be obtained while initial sequence is derived from

rule-based result.

Keywords : Dynamic scheduling, Flow shop, Performance improvement

1.

Introduction

Scheduling problems arise when a manufacturing system has
possibilities of processing various jobs, which have different

due-dates and a variety of product characteristics. In modern

industry there exist volume production lines, which are referred to
as flow shops where jobs go along the same route. The scheduling
problem of flow shop is generally also NP-hard P® although it
seems to be simpler than that of job shop. Herein, we get a
definition of a NP-hard problem in the static sense that
deterministic jobs and - machines are considered. In an actual
factory a more realistic flow shop is a dynamic one where the jobs
continuously arrive and machines may be reduced due to
breakdowns. Generally a dynamic flow shop is much more
difficult to get an optimal or near optimal solution than a
traditional NP-hard problem in a static sense and a different study
policy should be taken into account.

Moreover we usually consider special scheduling policy
according to the size and complexity of a problem. For a small or
intermediate size problem, we are often interested in finding its
minimal or maximal value of objective function. But for a
large-scale problem, obtaining an exact optimal value becomes
almost impossible. As a consequence, macro viewpoints are taken
and if just common characteristics of jobs are considered system
will be simply modeled and easy to obtain a theoretical result.
Nevertheless parameters of system model derived from statistical
data of long history often involves a possibility of big error due to
unstable system input and environment, with which obtained
tesults may be far from performance improvement of current
system.

In an industrial flow shop, we think, there simultaneously exist
deterministic and stochastic elements. A deterministic element is
decided in the sense that its fluctuation can be ignored with
concerning overall system behavior. The more deterministic
parameters are used, the more precise the system model is. But the

* Depl. of Electrical & Computer Eng., Yokohama National
University
79-5 Tokiwadai, Hodogayaku, Yokohama 240-8501

1858

system model size may become larger due to more detailed
information. To an acceptable degree it is possible to face such a
large-scale model using modern computer technique. As a
practical instance hereafter studied, a printed circuit board
production is considered, where there are about a hundred
machines and thousands of work-in-process and preparation jobs.

In this paper we propose an approach based on relative priority
to solve the above large-scale dynamic flow shop problem. Not
only the current deterministic jobs but also predictable jobs in the
future are considered. We try to obtain adaptable sequence
preference, i.e. relative priority between jobs on every machine. A
motivation of our research is the hard combination of heuristic
rules and we expect to solve the problem based on inner nature of
sequence characteristic.

The remainder of the paper is organized as follows. In Section 2.
we review the relevant researches especially suitable for a
dynamic environment. The basic concept of relative priority is
described in Section 3. and a simple example is given in order to
illustrate its nature. Then the calculation of relative priority is
discussed and an algorithm is given. For demonstration of our
proposed algorithm a printed circuit board production line is
applied and some data results are given in Section 4. Concluding
remarks appear in Section 5.

2. Literature Review and Notations

Perhaps Johnson’s work in 1954 @ which obtained a greedy
solution for 2-machine flow shop, was a milestone of modemn
scheduling study. After that many studies have been expanding
and attempted to solve more complicate cases but reached a
disappointed result that most of them were NP-hard problem. No
perfect approach is found to get an optimal solution for
intermediate size problem although nowadays techniques of
solving NP-hard problem constantly appear.

Under the consideration of large-scale dynamic flow shop
scheduling problem, heuristic rules are widely adopted because of
its simplicity and easy implementation . Of the early works on
heuristic rules, the algorithm of Giffler and Thompson © is

IEEJ Trans. EIS, Vol. 123, No.10, 2003



Dynamic Scheduling Using Relative Priority Approach

considered as the basis of all other rules. And as a survey of
scheduling heuristic rules, Panwalker and Iskander © reviewed
113 rules.

Many experimental studies ™%

on heuristic rules for
practical manufacturing system have revealed that a single
heuristic rule is of poor ability to get a good result and hybrid
policy is necessary. Unfortunately, the combination of rules is
often hard. One of most popular hybrid policies is artificial
intelligence, which stems from natural evolution. Neural network
and genetic algorithm @2 are often applied to make such a
decision. The heuristic rules are feasible and effective in a real
factory, and heuristic rules based result is regarded as the start
point of our research in this paper.

On the other hand, we adopt the standard notation to represent
dynamic flow shop problems suggested by Graham et al ®. The
triple formulation «|B|v indicates machine configuration, job
characteristic and optimal criteria respectively. For instance,
Fm “ Cl‘ﬂﬂX

m-machine flow shop problem, concerning with a blocking

denotes minimization of make-span for an
environment. Generally notation [ denotes flow shop and
C_.. the completion time of the last job.

By default, the attribute 8 of the formulation F | C_
represent that it is busy-scheduling where a- machine will start
processing if its buffer is not empty, and it is non-preemptive
where each job must be processed without any interruption. A
special term should be added while additional characteristics are
E \dynamic|C,_,,

continuous arrival of jobs, i.e., the dynamic case.

included. For example, indicates

Usually we assume that in a flow shop all jobs follow the same
route and each job has exactly one operation on each machine.
Considering specific cases, some modifications are allowed, for
example a flow shop may be composed of a series of works, each
A detailed

description of such variations of a practical flow shop is given in

of which consists of several similar machines.

Section 4.

3. Methodology
3.1

primitive in scheduling field. So it is often used to illustrate the

Basic Problem One-machine problem is the most
efficiency and feasibility for proposed approach because of its
simplicity and easiness. Static scheduling of one-machine problem
can be described as follows.

Given a set of jobs N ={12, -
and the processing time on the unique machine are represented by
D= {d,,d,,,d }yad T ={r,7,,---,7,}, respectively.
- The complete time of job je N 1is represeited by ¢ IE

-,n} . The due-dates of jobs

Concerning the makeshifts of job j, namely o i =Cjs the job
J is late if a’j—c] <0, or it is spare. As an example,
D={d,,d,, -, ds}

using following formula

d, = 450(;/10+1) 7 =100

and 7 ={7,,7,,"",T5} is given

where ¥ is a random number between 0-1 and operator /

BHFHMC, 123%# 105, 2003 4

1859

truncates fractional part. Table 1 shows an instance of generated
data.

One of the most common scheduling problems is how to reduce
the number of late jobs and their late degree. Firstly dispatching
rules are considered and applied to solve above scheduling
problems. Min-Slack (the shorter slack time d -, the earlier
mount on machine) rule, which is hereby equivalent to
combination of LPT (the longer processing the earlier mount) rule
and EDD (the earlier due-date the earlier mount) rule, is one of
possible solutions. Based on sequence of Table 1 and Min-Slack
dispatching rule, both results of job makeshift are shown in Fig.1.

Unfortunately, Fig.1 shows that the Min-Slack rule is even
worse than the sequence of Table 1, a random one. From Fig.1, a
question appears: whether is there a way to get the best solution?
When the system scale is small enough, it is possible to analyzed
and get a greedy solution, using existed approaches, such as
integer programming. But with the increase of system scale, it
becomes hard. Consequently, above question becomes: whether is
there a way to find a good enough solution? Nowadays, local
search methodologies have prosperously proposed to answer the
question. Among various local search of iteration for improving

system performance, threshold algorithm % 3

16)

, genetic algorithm
and Tabu algorithm “* are usually applied. In a traditional local

search algorithm, objective function is enhanced by investigating

Table 1. An instance of one-machine problem.
Ty 10 71‘50|59’20‘23’49‘75’77|60‘10
dy 450 ‘
T11-20 28|16|95‘60‘50‘24‘69‘26‘73’39
a2 900
Ty 60|61’26‘39‘10|3’98‘3'66‘6‘4
dy s 1350
T3p a0 45‘37’15|4’57‘38L54(33‘16’14
Ay 49 1800
Ty 50 43‘44’30’38‘5‘80’62’74’7‘36
Ay s 2250

oo It ] makeshift

Makeshift

—&— Minslack based makeshift

Fig. 1. Result based on Min-Slack dispatching rule Vs Initial result.



to a group of neighbor, which is derived from random permutation.

One obstacle of these local search methods is how to reduce time
cost because neighbors are nearly out of count for a large-scale
system. Another one is that it is difficult to deal with dynamic
case. | ‘

3.2 Concept of Relative Priority =~ At first, we try to
solve above problem using general local search. Neighbors of
current’sequence are randomly selected. If a better one appears,
goes to it. Obviously such a policy takes less time than searching
an appropriate one from a group of better neighbors, but probably
reaches a not good enough optimal solution,

For the problem of section 3.1, objective function f is
defined on jobs’ makeshifts {d ,—c j}n.

f= zﬂj(dj -c, _6)2 ........................................ )
j=1
;=0 if d,-c,-c20
A,=1 if d,—c,—0<0

where & is referred to as spare time factor, which is
introduced to improve spare time of a job even if no job lateness
oceurs. ]

Thus the problem of improvement of jobs’ spare time and
decrease of jobs’ lateness is equivalent to minimization of f . Let
o =300, which means that job makeshifts will be closer to 300
when iteration reaches a better solution. Fig2 shows two
simulation results based on random local search. It shows that
there might exist several local minimization points and some of
them are far from the best one. Therefore, it is important to make a
way to get the good enough one. ‘

Herein, we focus on the worse solution and generation of
random permutation. Concept of relative priority is introduced as
follows. The initial sequence is represented by sequence vector

w=[k,k,,-,k,], (k,e N, wu=12,---,n) , which
specifies that the job will be processed with the sequence
k,ky, -k, . A vector of relative priority

P={p,p,,>*,p,} Is defined on real number, where
element p.(j=12,---,n) represents the priority relationship
k k where j=£k, .

between jobs k k., ,

Given two integers
u,ve{l2,---,n}. ¥ p >p . it means that the gap between
jobs k k ie., the

u M ul

is deeper than that between jobs k k.
permutation between k k., Wwill be more difficult than that
between k k

Given the initial sequence 7, =[k ky, -, k.]and its

Lu1» Vice versa.

cotresponding objective value f, . Let the initial relative priority
vector P°=[p’, py,---,p°] =[0,0,---,0] . A random
permutation occurs between jobs k’kS,kyky -, kS kD,
producing a new sequence 77, and its objective value f,. Then

relative priority vector is refreshed by

Pl:[pll,pé,"',p,l,] .................................................. 3)

1860

0 jf kykgy=0

u U+l
p} =4 9, if k3k£+l =1 j= kl? ................. )
- 51 ZJF kz?kz?ﬂ = 1 ] = k3+1

where £°k°,, =1 stands for permutation between jobs kXKL,
and kfkfﬂ =0 for no permutation occurrence. On the other
hand, we have k;’k: =0 if kf_lk,? =1 because a job can be

only permuted one times for each step.
0, is referred to as relative priority factor, which can be
calculated by

_h-S

The next neighbor 7, will be generated from sequence 7,
even if f < f,. However the permutations at next step will be
select using following formula

)0 if r=0501+6")
el i r<0501+6))

where 7 is random number between 0-1 and 6’j is a threshold,
calculated by

Lol Yipl - pl 120
0]1 — (pl pmm) (pmax plnln) p;=v %)
0 p} =0
1 1 1]
Prax = Inaxpj, P = MiN pj .............................. (8)
Similarly, relative priority vector is refreshed by
pzz[pf,p;...’pj] ................................................ ©)
0 if kik), =0and p, =0
py =1 sen(,) if kik,,=1and p,=0
Py +sen(8) if &'kl =1 and p) #0
2
.......................................... (10)
where
5, = o= (11)
Lt h
S, if j=k
Sgn(52) :{ 2 f J B (12)
- 52 lf J= kzlz+1

For the new sequences 7,,7,,7;,--, the same process as the
above is applied.

Finally, for the change of objective value, two results are shown
in Fig.2. One of improved makeshift results is shown in Fig.3 and
Table 2. Fig.2 clearly indicates that the relative priority approach
can more quickly and stably close to final solution, implying that

IEEJ Trans. EIS, Vol. 123, No.10, 2003



Dynamic Scheduling Using Relative Priority Approach

the relative priority based search have the possibility of overcome
the local minimization. Moreover, its final solution is better than

1500000

‘§‘ - Random local search 1
£ wuupouss Random local search 2
% 1300000 § ——a— Relative priority search 1
(o] ~—e— Relative priority search 2
1100000
900000 —
1 Steps 2000
Fig. 2. Relative priority search Vs random local search.
600
e [011H10] TSI
£ 500
% —f— Relative priority result
é 400
300
200
100
0
-100
Fig. 3. Resull based on relative priority approach Vs Initial result.
Table 2. Relative priority based result (s ;= d ;¢ ).
u jr,d ¢ s \u jr,d ¢ s
1 9 60 450 60 390 26 24 39 1350 1115 235
2 4 20 450 80 370 27 22 61 1350 1176 174
3 10 10 450 90 360 | 28 30 64 1350 1240 110
, 4 6 49 450 139 311 29 29 66 1350 1306 44
5 5 23 450 162 288 30 27 98 1350 1404 -54
6 2 50 450 212 238 31 39 16 1800 1420 380
7 3 59 450 271 179 32 34 4 1800 1424 376
8 1 71 450 342 108 33 40 14 1800 1438 362
9 7 75 450 417 33 34 32 37 1800 1475 325
10 8 77 450 494 -44 35 33 15 1800 1490 310
11 16 24 900 518 382 36 38 33 1800 1523 277
12 - 11 28 900 546 354 37 31 45 1800 1568 232
13 12 16 900 562 338 38 36 38 1800 1606 1%4
14 18 26 900 588 312 39 37 54 1800 1660 140
15 20 39 900 627 273 | 40 35 57 1800 1717 83
16 15 50 900 677 223 4 45 5 2250 1722 528
17 16 60 900 737 163 42 47 62 2250 1784 466
18 17 69 900 806 94 43 41 43 2250 1827 423
19 19 73 900 879 21 44 42 44 2250 1871 379
20 13 95 900 974 -74 45 50 36 2250 1907 343
21 26 3 1350 977 373 46 43 30 2250 1937 313
22 25 10 1350 987 363 47 49 7 2250 1944 306
23 28 3 1350 990 360 48 44 38 2250 1982 . 268
24 23 26 1350 1016 334 | 49 48 74 2250 2056 194
25 21 60 1350 1076 274 50 46 80 2250 2136 114

BHWC, 123%10%, 2003 F

1861

that of random local search. Note that compared to the initial
result, not only the so-called job lateness has been improved in
Fig.3, but also has the spare time of jobs been improved. The
number of jobs that spare time is more than 100 is increased by 8
and the number of jobs that spare time is more than 200 is
increased by 9.

The principle of relative priority method depicted above is
simple. A job, which is selected to be processed early or late,
should be suppressed by its corresponding relative priority. A
threshold is calculated from relative priorities of all jobs,
determining which jobs are more possibly active to be permuted,
which jobs are more possibly inactive to be permuted. The basic
idea of relative priority method is stemmed from genetic
principle 19, where the gene (relative priority) more adaptive to
circumstance might be more possibly inherited (inactive to be
permuted), atid the Tabu search method ¢, where a taboo list is
introduced to limit the permutation. On investigation to these
methods, we try to overcome two obstacles, the explosive model
size and the permutation with numerous possibilities, in order to
solve the large-scale case. Hereby, the binary model, the basic
genetic algorithm model, is replaced by job’s relative priority
description. And the Tabu is replaced by the possibility of
permutation, a more flexible limitation. Compared to traditional
genetic algorithm and Tabu search, both of which also belong to
variants of basic random search, the relative priority method has at
least four advantages: (1) the model size is reduced and it become
possible to deal with large-scale case; (2) the search efficiency is
enhanced, which is also a key factor because. numerous
permutations appear if we consider a large scale case; (3) the local
optimal point can be gotten over; (4) Uncertain jobs can also be
included as described in the next Section.

3.3 F, |Dynamic| f,,, Problem A [ | Dynamic| f,,
problem is described as follows. Given a set of machines
V ={1,2,---,m} and a set of buffers B={b,b,,-:-,b,},
which implies that there is a buffer for each machine. Given a set
of jobs N={12,---,;n} =N, UN,UN,, where N,
stands for a set of work-in-process jobs, N, for deterministic
jobs ready to enter and N for stochastic jobs having a
possibility of being cancelled or with a changeable due-date.
D={d,,d,,---,d,} stands for due-dates of all jobs, and
T ={z,},p, for processing time of job ;€ N on machine
i€V . Objective function f is used to evaluate all possible
sequences and the goal is to get minimization of f .

For dynamic system, i.e., continuous arrivals of jobs considered,
the first question is how to evaluate its performance, namely the
construction of objective function f . As the evaluation of
deterministic part, an objective function can be constructed on

N, and N .Forexample,

Ja= fd(daadgacaacﬁ)

where d, , d, denotes due-date of N,, N, and c,,c,

denotes complete time of N, N, respectively. But we know

that an optimal schedule over N, and N might grow worse



because the N, might have an effect on c_,c 5 - Therefore, for
dynamic case, we do not try to get an absolute minimization of
objective vale but to get a stable relative priority matrix

AP <& suchthat Afj, <A s, .(14)

where & is a tiny constants and A denotes the variation range
of objective value,

The second question is how to use relative priority approach
effectively because a job might be permuted again with another
job on another machine even if it has been permuted. One of
feasible policies is that only first machine’s jobs can be permuted
and after that FIFO rule is used. In this paper, we make a
modification to this policy, that just bottleneck machines are
considered, where permutations are allowed.

Therefore, we get a calculation iteration of relative priority
matrix for m-machines case as follows. The job sequence i.e., the
schedule

e (15)
ieV,k,eN,UN,, n'=d+w

is defined on jobs. The smaller the subscript j is, the earlier the
job kl.j will be mounted. A matrix of relative priorities

P =[py]pw-(n =d+w) is defined on real number, such
that

PO — [O]mxn' .............................................................. (16)

Pv=[P,;-]mxn' ............................................................. (17)

0 if ki‘;_lki‘z;il) =0 and p; =0

, sgn(d,) if k

Apv-1l 1
p,= z:z ki‘zu-v»l) =1 and pyv =0

P, +sgn(d,) "
T2 if kyhgay =1and prt 20
......................................... (18)
é‘v = g(f”v’f”H) ..................................................... (19)
s, if j=ki
Sgn(é‘v) :{ v ’ . Ly (20)
: -6, if J= ki(u1+1)
p;’ p:z'~1)] ............................................................. (21)

igV' UV’ and je N,UN,
where 7,7, stand for two neighbor sequences, respectively.
The factord, implies deterioration or improvement from T,
to 7z,. V'and V'* denote throwing machines and bottleneck
machines, respectively. The permutation of jobs will be selected

using the same formula as section 3.2 proposed.

4. A Printed Circuit Board Flow Shop

4.1 Description FW denotes a flow shop composed

of works. Each work might be composed of several parallel
consider a " case of
FW |dynamic| f,, , characterized by

(D  There are 31 works, composed. of 103 machines;

machines. In this paper, we

@  Processing time is dependent on job sequences;

@  Three works can be used to enter ordered jobs.

Generally the whole line is divided into two stages. One is inner
layer stage, which is responding for processing cores, such as
chemical surface treating, dry film laminating, etching, striping,
etc. And the other is outer layer stage, which is responding for
processing bases, whose some of processes are similar to that of
inner layer stage. Before the completion of inner layer stage, cores
are stick to a base. At one of outer works, a base is cut into several
panels, i.e. printed circuit boards.

The processing time of a job on all machines is depicted in
Fig.4. A bar indicates a core, a base or a printed circuit board.

For core processing, we calculate a job £ s processing time
on machine W, by

7, =t(size,i)(q(l -2)=2)/2-1)+d +7 - (22)

where I(size,7) stands for tact time which is related to product
size, ¢ for job size, [ for the number of core layers of a panel,
d for lead time, and 77 for arrange time. 7} might occur, for
example, on etching work when the thickness of copper foil of the
core differs from the previous one.

For base processing and final panel processing, we get similar

formulations
7, = I(size,i)(q - Db d 77 oo (23)
7, =1(size,D)(qb —1) +d 4177 oo 24)

respectively, where b represents the number of boards on a
panel. Also might 77 occur due to the change of base size, job,
cage etc. "

Define a work’s processing speed U by U =x/7, where K
is the number of machines of the work and 7 represents the
mean processing time for a job. Deriving from 1626 sampling jobs,
all works” processing speeds are depicted in Fig.5.

4.2 Simulation and Data Results At first we obtain
1063 jobs lateness from 1626 jobs (2 weeks’ load and 563
predicted jobs) simulation result, as shown in Fig.6, based on
FIFO and EDD rules, currently used in factory. The result shows

Arrange time Job 2

o ‘ Job1
— Lead time

Fig. 4. processing time of two jobs.

IEEJ Trans. EIS, Vol. 123, No.10, 2003



Dynamic Scheduling Using Relative Priority Approach

50
45
E 40 - —&—jobs/hour
% 35|
5 30
3
5 2
g 20
2 L
g 15
§
S 10 [Work Nol
5 F
0 1 1 ‘a I )
1 3 5 7 9 11 13 15 17 19 21 28 25 27 29 31
Fig. 5. Mean throughout for each work.
715
I
q%‘ Initial makeshift
H10
2
=
=5
0
-5
-10
-15
Fig. 6. 1063 jobs latencss using FIFO and EDD rules.
. § 2600
2
& 2500
g
P=]
3 2400
B
5

2300

2200

2100

2000

1900
1 51 101 151 201 251 301 351 401 451 Steps
Fig. 7. Improvement of objective function.
715
3 .
?é ol Improved makeshift
£
C
= 5t .
0
1000
5k
-10 +
Job No
-15

Tig. 8. 1063 jobs lateness using relative-priority algorithm.

that some jobs are finished several days earlier than expected but
some jobs delay. Therefore it is possible to reduce the jobs’ delay
by reducing foregoing jobs’ speed simultaneously.

Based on relative priority algorithm, proposed in Section 3, the
jobs delay can be decreased with the iteration of calculating
relative priorities for jobs in all buffers of 31 works. In practical

EFMC, 123# 105, 2003 &

1863

computing process, only bottleneck works (5,21,27), whose
processing speed is obviously lower than previous work and next
work, and 3 input works (1,4,11) are considered.

Define objective function as

4,=0
A, =1

if d,—c¢,—120

if d —c,—1<0

where all time units are represented by days and ¢ =1implies
that a job, whose spare time is less than a day, might be improved.
The change of objective function value is shown in Fig.7 with the
progress of iteration using algorithm given in Section 3.3.

The final result of job makeshift is given in Fig.8. It shows that
the most jobs lateness can be greatly reduced but some of them
nearly unchangeable because they are work-in-process jobs, which
have passed a few works and have been late before the start point
of simulation. o ‘

Tt takes about 2765 seconds for all 500 steps and about 730
seconds, i.e. 150 steps, to get the final stable priority set using
Linux operation system on Intel Pentium 4/1.8GHz personal
computer. Also Fig.8 shows the objective function value might be
slightly change due to the -influence of predicated jobs.
Rescheduling is needed after the system load is greatly changed,
i.e. a considerable predicated jobs have been determined. One of
advantages of relative priority approach is that the old result can
remain and it might take less time to get a new stable relative
priority matrix. -

On the other hand, in above printed-circuit-board production
line arrange time should be cut down because it will reduce the
working efficiency of machines. It is possible to decrease the
arrange time using relative priority approach. The jobs, whose
relative priorities are less than certain valve, can be mounted
according the sequence where less arrange time occurs.

5. Conclusion

Relative priority approach is proposed to solve a large-scale
dynamic flow shop problem in this paper. In relative priority
approach, the job sequence is described as a matrix of relative
position possibilities, which are in proportion to their effects on
objective function. The original motivation stems from the fact
that simple rule-based scheduling is usuvally unable to improve
effectively the performance. And the obtained result shows that
relative priority approach is a possible solution to similar
problems.

(Manuscript received June 24, 2002, revised December 5, 2002)

References
J. D. Ullman : “NP-complete scheduling problems”, Journal of Computer
and System Science, Vol. 10, pp.384-393 (1975)
H. Kamoun and C. Sriskandarajah : “The complexity of scheduling jobs in

)
@

repetitive manufacturing systems™, Ewuropean Journal of Operation
Research, Vol.70, No.3, pp.350-364 (1993)

S. M Johnson : “Optimal two and three-stage production schedules with
setup times includes”, Nav. Res. Logist. Quart, Vol.1, pp.61-68 (1954)

A. Reisman, A. Kumar, and J. Motwani : “Flowshop scheduling/sequence
research: A statistical review of literature 1952-1994”, IEEE Trans. on
Engineermg Management, Vol. 44, No. 3, pp.316-329 (1997-3)

®
@



®

(®

)

®

®

(10)

an

B. Giffler and G. L. Thompson : “Algorithm for solving production
scheduling problem ”, Operation Research, Vol. 8, No.4, pp.487-503
(1960-4)

S.8. Panwalker and W. Iskander: “A survey of scheduling rules”, Operation
Research, V61.25, No.1, pp.45-61 (1977-1)

Lawrence M. Mein : “Scheduling semiconductor wafer fabrication”, IEEE
Trans. on Semiconductor Manufacturing, Vol.1, No.3 pp.115-130 (1988-3)
G. Habchi
flow of a manufacturing”, Simulation Series, Vol.30, No.3, pp.221-226
(1998-3)

Steve C. H. Lu, D. Ramaswamy, and P. R. Kumar :
policies to reduce mean and variance of cycle-time in semiconductor

“Study of the effect of process time variability on production

“Efficient scheduling
manufacturing plants”, IEEE Trans. on Semiconductor Manufacturing,
Vol.1, No.3 pp 374-385 (1998-3)

M. T. Costa and J. S. Ferreira : “A simulation analysis of sequence rules in
flexible flowline™,
Pp.440-450 (1999)
U. Domdprf apd E. Pesch :

European Journal of Operation Research, Vol.119,

“Evolution based leaming in a job-shop

" scheduling environment”, Computers and Operation Research, Vol. 22, No.

(12)

13)

a4

(15

1, pp.25-40 (1995-1) ‘
S. Y. Kim, Y. H Lee, and D. Agnihotri : “A hybrid approach for sequencing
Jobs usiﬁg Heuristic rules and neural networks”
Control, Vol.6, No.5, pp.445-454 (1995-5) ‘
R L. Graham, E. L. Lawler, J. K. Lenstra, arid A. H. G Rinnooy Kan :

sequencing and

, Production Planning and

“Optimization and approximation 1 deterministic
scheduling: A survey”, Annals of Discrete Math., Vol.5, pp.287-326 (1979)
E. H. L. Arts, PJM. Van Laathoven, J. K. Lenstra, and N. L. J.Ulder : “A
computational study of local search algorithms for job shop scheduling”,
ORSA Jowrnal on Computing, Vol.6, No.2, pp.118-125 (1994-2)

R. Nakano and T. Yamada :
problem”, in Proc. Of the 4% International Conference on Genetic

Algorithm, San Diego, CA pp.474-479, (1991)

“Conventional, genetic algorithm for job shop

(16) M. Dell’Amico and M. Trubian :
scheduling problem™, Annals of Operations Research, Vol.41, pp231-252
(1993)

“Applying tabu search to the job shop-

Yang Jianhua

(Student member) was born in Jiangsu province,
China, in 1968. He received the B.S. degree from
South-east University, Nanjing, China in 1990 and
the M.S. degree from Tsinghua University, Beijing,
China in 1993. He had worked in Automation
Department of Tsinghua University from 1993 to
2000. He has been a doctorial candidate of the
4 Department of Electrical and Computer Engineering,
Yokohama National University since 2001. His research interests include
flexible manufacturing system, shop-floor control and Petri Nets. Mr. Yang
is a student member of the Institute of Electrical Engineers of Japan,

Yasutaka FUJImOtO (Member) was born in Kanagawa prefecture,
Japan, in 1971. He received B.E., M.E., and Ph.D.
degrees in electrical engineering from Yokohama
National University, Japan, in 1993, 1995, and 1998,
respectively. In 1998, he joined the Department of
Electrical Engineering, Keio University. Since 1999,
he has been with the Department of Electrical and
Yokohama

National
University, where he is currently an Associate Professor. His research

Computer  Engineering,
interests include manufacturing automation, discrete event systems,
motion control, and robotics. He is a member of IEEE and Robotics

Society of Japan.

1864

IEEJ Trans. EIS, Vol. 123, No.10, 2003



