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This paper describes a novel application of genetic algorithm for navigation of an autonomous mobile robot
(AMR) under unknown environments. In the navigation system, the AMR is controlled by the decision-
making block, which consists of neural network. To achieve both successful navigation to the goal and the
suitable obstacle avoidance, the connection weights of the neural network and speed gains for predefined
actions are encoded as genotypes and are tuned simultaneously by genetic algorithm so that the static and
dynamic danger-degrees, the energy consumption and the distance and direction errors decrease during the
navigation. Experimental results demonstrate the validity of the proposed navigation system.
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1. Ihtroduction

The acquisition of navigation competency is one of the
key problems in the development of autonomous mobile
robots (AMRs). To solve this task efficiently, several
methods have been investigated. These methods are
roughly classified into the behavior-based approach, the
robot learning approach and the evolutionary approach.

In behavior-based systems, behavior is achieved
through coordination of a set of purposive perception-
action units, called behaviors. Based on carefully se-
lected sensory information, each behavior produces com-
mands to control the robot with respect to a well defined
aspect of the overall task. Usually, these systems need
a coordination mechanism for actions selection, which
can be modeled by neural network approach ®, the sub-
sumption architecture ®, a method based on Bayesian
decision theory ® and fuzzy rules ¥, etc.

The robot learning is based on the idea that a control
system (typically a neural network) can be trained using
uncompleted data and then allowed to rely on it abil-
ity to generalize the acquired knowledge to novel con-
ditions. The different learning algorithm has been used
for various purpose: i.e. back-propagation learning ©®;
reinforcement learning ; classifier system ; Knhonen
Self-Organized Maps ®, etc.

The evolutionary robotics approach which shares
many common characteristics with methods outlined
above is a way to develop robots and their sensor-motor
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control system through an automatic design process in-
volving Artificial Evolution =" The evolutionary ap-
proach is usually based on genetic algorithm. An ini-
tial population with the different “genotypes”, which
encodes the control system of an AMR, is created ran-
domly. Each robot.is evaluated by a score (fitness) that
measures its ability to perform the desired task in the en-
vironment. Those individuals that have obtained higher
fitness values are allowed to reproduce by generating
copies of the genotypes with the addition of changes
introduced by some genetic operators (e.g. mutation,
crossover, etc.). By repeating this process for genera-
tions, optimal genotype individual can be obtained in
the final.

In this paper, the evolutionary approach is introduced
to obtain the suitable navigation for an AMR under
unknown environments. In the navigation system, a
decision-making block plays an important role to select
the suitable action from the six fundamental actions dur-
ing navigation. To realize reasonable decision-making of
the AMR, the static and dynamic danger-degrees @ for
the obstacle are introduced. The danger-degrees repre-
sent the instinctive human knowledge for environment
recognition and are calculated by using the fixed fuzzy

" rules.
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The decision-making block consists of a neural net-
work, of which connection weights are encoded as part
of genotype and are tuned by genetic algorithm so
that the danger-degrees for obstacle, the energy con-
sumption and the distance and direction errors decrease
during the navigation to the goal. After tuning pro-
cess, the decision-making block can achieve the suitable
avoidance action from the obstacle and the successful
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navigation to the goal. :

The rest of this paper is organized as follows. Section 2
describes the configuration of the experimental system.
Section 3 introduces the overall control system. The
off-line tuning scheme is represented in section 4. The
simulation and experimental results are demonstrated in
section 5. Conclusions are addressed in the last section.

2. Experimental Setup

2.1 Tested AMR  Fig.1 shows the tested AMR
on which two driving wheels driven by dc servo motors

and eight ultrasonic sensors are mounted. The speed

and travel direction are controlled by the dc servo mo-
tors of two drive wheels. The eight ultrasonic sensors can
detect the surrounding obstacles. Two white bowls on
the top of the AMR are the marks to detect the current
position and direction of the AMR by a CCD camera.

2.2 Experimental Configuration The hard-
ware configuration of experimental setup is shown in
Fig.2. It is assumed that a rectangular arena of 1.8 X
1.4m corresponds to the experimental field in which
three dynamic obstacles are included. Each obstacle is a
cylindrical form with a diameter of 0.08 m and a height
of 0.20m. The obstacle can move straightly with the
constant speed of 0.15m/s.

The control signals to the right and left wheels are cal-
culated by means of computer software written in Visual
C4+ language, and delivered to motor drivers through
a 12-bit digital-to-analog (D/A) converter. The posi-
tions of obstacles on the robot-centered coordinate are
detected by ultrasonic sensors and those of the AMR on
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Fig.2. Experimental configuration.
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the reference coordinate system are measured by CCD
camera with image processor. The measured positions
are fed to host computer by a 12-bit analog-to-digital
(A/D) converter as the environment recognition infor-
mation. The sampling interval is set to 200 ms.

3. Actual Control System of AMR

Fig.3 shows the proposed overall control system. The
system acts as an obstacle avoidance motion controller
adding to a feedback controller to the goal.

3.1 Distance and Direction Errors Estimator
In this block, the distance and the direction errors be-
tween goal and current position of the AMR are esti-
mated and are fed to a decision-making block. The dis-
tance and the direction errors are given by

derror = S<\/(_$g —z)? + (yg = y)2> -------- (1)

lIleqf"ro'r‘ = S((I) - 0)

§ = arctan gg_:g ...................... (2)
2
S(ZE) - 'm — ’ .................. (3)

where (z,4,y,) is the goal position, (z,y) is the current
position of AMR measured by the CCD camera, ® is the
travel direction of the AMR, 0 is the goal direction. S is
the normalization function which maps the real values
into the interval [0,1]. Notice that the distance and the
direction errors are used not only as the feedback signals
but as the estimation signal in the tuning block.

3.2 Decision-making Block In the proposed

control scheme, the decision-making block is the most

important part, and decides the action of the AMR.
The decision-making block consists of a neural network
shown in Fig.4. The input signals are the distance and
direction errors to the goal, the current and one sampling
delayed outputs of the ultrasonic sensors. The outputs
of the block corresponds to six fundamental actions for
the AMR, that is Go Straight, Right Turn action, Left
Turn action, Right Rotation action, Left Rotation ac-
tion and STop action. Only one action that has the
highest output level in the output layer is selected as
the suitable action. In addition to the input and output
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Fig.3. Overall control system.
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layers, the neural network has one hidden layer with 12
neurons.

The sigmoid transfer functions of the hidden layer and
the output layer are expressed by

—2—— — 1 for hidden layer
Fz) = 1+ exlp (—=z)
m for output layer

................... (4)

If the appropriate tuning parameters are obtained, the
decision-making block can select the suitable action and
realize the successful navigation of the AMR. under un-
known environments. . However, it is difficult to obtain
the suitable decision-making in advance. Therefore, the
off-line tuning process of the decision-making block is
required discussed in next section 4.

3.3 Actuator Control Block The tested AMR
is controlled by the two independent driving wheels as
shown in Fig.1. The objective of this block is to de-
termine the speed of two driving wheels to realize the
selected action from the decision-making block. In this
research, the wheel speed is set to the discrete values
expressed as follow.

*GS (Vlefta Vright) = (gs-ymama gs~Vmaw)

*RT (Vlefta V’right) = (gt~Vma.'E7 005)

oLT (Vlefty Vright) = (0-05)gt-ymax)

*RR (Vleft7 V’right) = (gT~Vmam> “gr-ymaz)

LR (Vlefty V’r‘ight) = (_gr~umaxagr~yma:c)

where g5, g+, g- are the speed gains for go straight
action, turning action, and rotating action, respectively
and are set between 0 to 1. V4, is the maximum speed
of tested robot and is set to 0.2m/s.

Since stop action is to brake the robot, both speed
for right and left driving wheels are set to 0. Therefore,
stop speed gain is not needed.

‘The speed gains are incorporated into genotype and
are simultaneously tuned with connection weights of NN
by genetic algorithm.

4. Off-line Tuning of Decision-making
Block and Actuator Control Block

In this section, the off-line tuning scheme of the
decision-making block and actuator control block using
the genetic algorithm is discussed. Fig.5 shows block
diagram in the off-line tuning mode. To improve the
precision in simulation, the functions of the ultrasonic
sensors must be modeled accurately.

4.1 Simulator of Ultrasonic Sensors. It is
easy to calculate the distance and the direction of the ob-
stacles geometrically in the simulation. However, the ac-

" tual distance and direction of the obstacles are measured
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by ultrasonic sensors with wide directivity. Therefore,
the tuning results based on the geometrical calculation
may have the fetal defects due to the uncertain models
of the ultrasonic sensors. To remove the model error,
the simulator of the ultrasonic sensors is introduced.

The objective of the simulator is to simulate the ac-
tual outputs of the eight ultrasonic sensors mounted on
the AMR by using the geometrically calculated distance
and direction of the obstacles. The simulator consists
of eight artificial neural networks (2 x 40 x 10 x 1 neu-
rons in each layer) corresponding to the sensors. The
neural networks are adjusted by the back propagation
algorithm in advance so that the output signal of each
neural network corresponds to the actual output of the
sensor. Fig.6 is the comparison between the outputs
of the ultrasonic sensors and the tuned simulator, and
demonstrates the validity of the tuned simulator of the
ultrasonic sensors.

4.2 Danger-degree Estimator In the obstacle
avoidance problem of AMRs, the concept of the danger-
degree is effective and has been introduced by Maeda
and Takegaki®®. In the reference the static and dy-
namic danger-degrees are estimated by using the fixed
fuzzy rules, then, the avoidance action is obtained by
the decision table categorized by the danger-degrees.
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Fig.6. Comparison between the outputs of ultra-
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" In this paper, the static and dynamic danger-degrees
for the obstacles are introduced. The static danger-
degree focuses on the static relation between the AMR
and the obstacles. Therefore, the outputs of the sim-
ulator are encoded as the inputs to static fuzzy esti-
mator. On the other hand, the dynamic danger-degree
represents the dynamic relation between robot and ob-
stacles. The variations of the outputs of the simulator
are encoded as the inputs to the dynamic fuzzy estima-
tor. Based on the experience and knowledge of control
engineers, the sets of the fuzzy rules are tuned before-
hand.

The static and dynamic danger-degree can be ex-
pressed as

bW
‘= ZMZM@ (5)

_ 2pebsWe
b= > pufhg ©)

where p;, pe are the grade values of distance and
direction calculated by static danger-degree fuzzifica-
tion membership functions, W, is the weight predefined
in static defuzzification singleton membership function.
Similarly, ptw, te are the grade values of distance and di-
rection variations calculated by dynamic danger-degree
fuzzification membership functions, Wp is the weight
predefined in dynamic defuzzification singleton member-
ship function. ‘ ‘

4.3 Tuning Block

4.3.1 Coding The weight parameters of the neu-
ral network in the decision-making block and speed gains
in actuator control block correspond to the genotype,
and represent the organization of an individual 7 of a
group of the population I. Then, the individual i is
given by genetic codes as )

i: W(%, ey W{?,ll? W&Oa it W1n1,57.gs>gta 9gr

Each individual is estimated at every trial and ad-
justed by the following selection, crossover and mutation
operations.

4.3.2 Fitness Function Each individual is eval-
uated by the following fitness function

TEH D, 123 % 10 5, 2003 &
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Fig.7. Study situations for AMR.

() + €9 e+ e + o)
Jn= T + fl?
................... (8)
where e and egl) are the sums of static and the dy-

namic danger-degrees, while e;’ and 6517 ) are the sums

of the distance and the direction errors with respect to
goal, e.(;n) is the sum of energy consumption, at study
situation n. fp is the penalty. T'is the real time from
the starting point to the goal at every trial, and n cor-
responds to the study situation shown in Fig.7.

The sums of the static and dynamic danger-degrees

are given

Y (B ey 9] + lar ()] + les(®))

(n)
d

€a

e X 18;(2)]
a ]

where «; and ; are the static and dynamic danger-
degrees discussed in the above section. According to
the define of static danger-degree, the obstacles in back-
side are not considered. Therefore, e, doesn’t include
informations from the ultrasonic sensors US4, USh and
US6.

The sums of the distance and direction errors are given

€p

T
ey = ky Z Yerror (t)

t=0

where derror a0d Werror are the distance and the direc-
tion errors given by Equation (1) and (2), kv and kq are
the gains and are set to 0.15.

The sum of energy consumption is given by



gs for GS action

o — Z g for RT and LT actions
¢ sl for RR and LR actions

N 0 for ST action

-(13)

In equation (13), it’s assumed that the consuming en-
ergy is proportional to the wheel speed. Although the
higher speed motion consume much energy, the traveling
period, T, is shorted.

Furthermore, the penalty f, is given by

£ = { 500 not arrive to the goal
=

0 arrive to the goal

Equation (14) implies that the large penalty is added if
and ouly if the AMR, can not arrive at the goal within
the given period T),.

4.3.3 Genetic Operations Fig.8 shows the out-
line of the proposed genetic operations. The number of
individuals in each generation is set to 100. Firstly, the
individuals are applied to the navigation of the AMR
and evaluated by the fitness function in order. As a re-
sult of estimation, the individuals are ranked. The best
individual is copied and remains in the next generation
without modification. On the other hand, the 10 worst
individuals are selected and can not remain the next gen-
eration. After ranking, the rest are randomly created by
combining two individuals based on crossover strategy.
Some individuals expect for the best individual are mod-
ified by mutation with probability of 0.3. Consequently,
the individuals in the next generation are obtained by

N
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Fig.8. Genetic operations.
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the genetic operations.

4.4 Tuning Results To tune the decision-
making neural network and speed gains, the navigations
of the AMR in the various situations shown in Fig.7 are
simulated.

T'ig.9 shows the estimated value of the best individ-
ual in each generation. The estimated value decreases
as the generation processes. This simulation result im-
plies that the suitable decision-making neural network
and speed gains are tuned by the genetic algorithm.

5. Simulation and Experimental Results

In order to confirm the validity of the proposed nav-
igation system, both the simulation and real world ex-
periments of AMR are conducted. . '

5.1 Simulation Result Figl0 shows the simu-
lation result under the condition of 3 obstacles. The
obstacles go straight with a constant speed of 0.15m/s.

The AMR can arrive to the goal with avoiding three
coming obstacles. This result demonstrates that the rea-
sonable navigation is obtained by the proposed scheme.

5.2 Experimental Results

5.2.1 Navigation under Static Environments
Three kinds of classical static situations are used in the
experiments.

Although we did not use these situations during offline
tuning of decision-making block,.the AMR, can navigate
to the goal successfully without hitting the obstacles.

5.2.2 Navigation under Dynamic Environ-
ments Two kinds of dynamic environment are pre-
pared in the experiments, with one dynamic obstacle
and two dynamic obstacles.

Fig.14 and Fig.15 show the trajectories of the AMR
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12 - _(f @ : O Dynamic Obstacles
Y ) A— I 5 - | N
% ] i
06 : ¢ e
0.3 -
0
0 03 0.6 0.9 1.2 1.5 1.8
X [m]
Fig.10. Trajectory under condition with 3 dy-
namic obstacles.
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0
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Fig. 11. 'Trajectory under static panel condition.

IEEJ Trans. IA, Vol.123, No.10, 2003



Navigation of AMR Under Decision-Making Strategy

0 02 04 06 08 1 12 14 16 18
, X [

Fig.12. Trajectory under corridor condition.

15

1.2

- 0.9

=

> 0.6

0.3

Y 0.3 0.6 09 1.2 1.5 18

Fig.13. Trajectory under unstructured condition.

5 .
1 O Mobile Robot
12 O Dynamic Obstacle
=0
& 9
>
0.6 N
" NN
0.3 ey
o i
0 0.3 0.6 0.9 1.2 1.5 1.8

X [m]

Fig. 14. Trajectory under condition with one dy-
namic obstacle.

1.5 T i
s' Goal g1 O Mobile Robot
12 7 O Dynamic Obstacle
4 ! -5 !
~ 09 ! -3
g - 520
> 0.6 E) ‘ g G I
A 2%
0.3 ra --E—-- memmed
i 5
LU i
0 Start
0 0.3 0.6 0.9 1.2 15 18
X [m]

Fig.15. Trajectory under condition with two dy-
namic obstacles.

and obstacles under two different dynamic situations.
Fig.16 shows the selected action of decision-making
neural network, and Fig.17 depicts the estimate parame-
ters during navigation under condition in Fig.14. It can
be seen that both danger-degrees can be properly eval-
uated by the fixed fuzzy rules and the decision-making
block with the optimal weights set can select the reason-
able action to avoid obstacles on the way to the goal.

6. Conclusion

In this paper, a navigation problem for an autonomous

TEHR D, 1234 10 B, 2003 &£
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mobile robot under unknown environment is considered.
‘To generate the suitable avoidance action for obsta-
cle and navigate to the goal successfully, the decision-
making strategy tuned by genetic algorithm is proposed
in this research. The static and dynamic danger-degrees,
the distance and direction errors and the energy con-
sumption are used to estimate the set of weight pa-
rameters of decision-making block and speed gains in
actuator control block. After off-line tuning, we imple-
mented the control system in the tested mobile robot.
In our experiments, the mobile robot was navigated suc-
cessfully in various environments. Experimental results
imply that proposed control system is correct and rea-
sonable and has adaptability in the real environment.
The future work will extend the scheme to obtain more
competencies for AMR, meanwhile vision system will be
mounted on robot to improve the efficiency of target
recognition and obstacle avoidance. Finally, this work
was supported by MEXT, KAKENHI (14750372).
(Manuscript received Nov. 25, 2002,
revised March 7, 2003)
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