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This paper presents a fast electromagnetic field analysis by the 3D geometric multigrid method with edge
elements. The multigrid method uses a symmetric Gauss-Seidel smoother with Conjugate Gradient accel-
eration. The convergence and computation speed of the V-cycle, W-cycle and full multigrid method using
this smoother are compared with the conventional multigrid using Gauss-Seidel. Comparison is also made
between the multigrid method and the ICCG method which is commonly used in the finite element analysis.
The efficiency of the multigrid method is analyzed for meshes whose maximum aspect ratios vary in a wide
range. It is proven that the multigrid method with the accelerated symmetric Gauss-Seidel outperforms the
multigrid with Gauss-Seidel and the ICCG method. The multigrid method with the accelerated symmetric
Gauss-Seidel shows stable convergence rate that does not deteriorate for bad quality meshes. It is robust
against mesh distortion and parameter variations and is much faster than the conventional multigrid with

- Gauss-Seidel and the finite element method using ICCG.
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1. Introduction

In the last years the edge element geometric multi-
grid method (MGM) has proven to be very efficient
for solving systems of equations resulting from the fi-
nite element analysis of electromagnetic fields ®~®. In
a well-designed MGM the number of arithmetic opera-
tions for the solution is proportional to the number of
unknowns N . For comparison, the widely used In-
complete Cholesky Conjugate Gradient (ICCG) method
requires N*/3 operations for 3D problems, which causes
the solution time to increase strongly with the number
of unknowns. This advantage, together with the better
convergence rate, makes the MGM very attractive for
the 3D analysis of electromagnetic fields.

In the MGM with nodal elements the smoothing is
usually done by the Gauss-Seidel (GS) method. Un-
fortunately, when edge elements are used, the perfor-
mance of MGM with the classical GS results in a poor
convergence. In this case properly designed block GS
smoothers are preferable ® ),

When the finite element mesh contains elements with
large maximum aspect ratios, however, the edge MGM
with the Gauss-Seidel smoother or its block variants
converges slowly or even fails to converge @ ® (®_ This
problem restricts the practical application of the con-
ventional edge MGM to models with simple geometries
whose meshes do not contain distorted elements.

To overcome this serious drawback, we propose an

* Graduate School of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashihiroshima 739-8527

B D, 123% 105, 2003 &F

1169

edge element MGM in which smoothing is done by the
symmetric Gauss-Seidel accelerated by the Conjugate
Gradient method. The convergence behavior and speed
of the V-cycle, W-cycle and the full multigrid algorithms
using this accelerated symmetric Gauss-Seidel (ASGS)
smoother are analyzed for meshes whose maximum el-
ement aspect ratios vary in a wide range. In order to
demonstrate the advantages of the proposed MGM with
ASGS, comparison is made with the conventional MGM
using Gauss-Seidel and with the finite element method
using ICCG. Finally, the validity of MGM with ASGS is
confirmed by comparing computed and measured elec-
tromagnetic force.

The results indicate that the proposed MGM with
ASGS is considerably faster than the conventional solu-
tion strategies. It has stable convergence rate that does
not depend significantly on the maximum element as-
pect ratio and material properties. The proposed MGM
with ASGS is superior to MG with Gauss-Seidel and the
finite element method using ICCG even for meshes with
small number of unknowns and levels.

2. Finite Element Formulation

Ungauged rhagnetic vector potential formulation is
used. The governing equation of the magnetostatic field

is given by

rot(vrotA) = J,

where v is the magnetic reluctivity, A is the magnetic
vector potential and J is the current density.

The finite element discretization is based on first order
hexahedral conforming edge elements (7. The magnetic



vector potential is approximated by

A(.’L‘,y, Z) ~ ZaiN’i(‘ra y,Z),
=1

where ne is the number of edges in the finite element
mesh, a; is the corresponding degree of freedom, namely
the line integral of A along edge i and IN; is the edge
shape function.

It has been shown that the convergence of the ICCG
method is very sensitive to the continuity of the source
current density ®. In order to achieve a high conver-
gence rate of the ICCG method, the continuity of the
source current density in this paper is satisfied by using
the method in reference (9).

3. The Geometric Multigrid Method

3.1 Types of Multigrid Algorithms The ba-
sic idea of the geometric multigrid method is to work
with a sequence of meshes of different size. The high-
frequency components of the error of the numerical solu-
tion are eliminated by iterative smoothing methods on
the fine mesh. The low-frequency components of the
error are interpolated to the coarse mesh. There they
become high frequency errors, which are eliminated us-
ing the same iterative methods.

Due to the lack of gauge in the finite element formu-
lation, the resulting coefficient matrix of equation' (1) is
singular. For this reason at the coarsest mesh the prob-
lem is solved by the ICCG method. Since the number
of unknowns of this mesh is small, this solution is not
time and memory consuming. This procedure, called

the coarse grid correction scheme, is briefly described
below ¢9;

Step 1. Relax a few times on Ss - £5 = by to obtain
an approximate solution Z;. Here Ss is the matrix of
the fine mesh, z5 and by are the vector of unknowns
and the source vector, respectively. This step is called
smoothing.

Step 2. Compute the residual vector ry = by — So - To.

Step 3: Project the residual vector on the coarse mesh
using the restriction operator r1 = R - 7rs.

Step 4: Solve the residual equation S; - e; = r1 to
obtain an approximation of the error e;.

Step 5. Interpolate e; to the fine mesh using the pro-
longation operator es = P - e1.

Step 6: Compute the improved solution zy = Zo + e5.

Step 7- Start a new iterative cycle by doing again
smoothing.

The coarse grid correction scheme can be used recur-
sively when solving the residual equation at Step 4. If
the coarse grid correction scheme is performed recur-
sively one time at each level, the widely used V-cycle
multigrid is obtained. Another efficient algorithm is the
W-cycle multigrid algorithm. The V-cycle and W-cycle
multigrid algorithms are shown in Fig. 1.

As seen in Fig. 1, the V-cycle and the W-cycle multi-

grid algorithms obtained their names according to the

shape of the cycle they perform. The smoothing in
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Fig.2. Definition of the prolongation operator.

these algorithms can be carried out before reaching the
coarsest mesh as well as after the coarse mesh computa-
tions. Therefore two separate names are used, namely
pre-smoothing and post-smoothing. The existence of
pre-smoothing and post-smoothing steps as well as the
number of smoothing iterations per cycle can be freely
defined by the user and open a wide area for investiga-
tion.

3.2 Choosing the Grid Transfer Operators

The efficiency of the MGM strongly depends on the
choice of the grid transfer operators. To interpolate the
edge values from the coarse to the finer mesh, a pro-
longation operator has to be defined. Additionally, a
restriction operator is needed for projection of the edge
values from the fine to the coarser mesh.

To define the prolongation operator, the mesh refine-
ment for the MGM will be discussed. Initially a very
coarse mesh is generated designated as level g —1. Then
every hexahedron is uniformly split into eight smaller
hexahedra as shown in Fig. 2. In this way the mesh for
the next level ¢ of MGM is generated. This procedure is
repeated until a mesh is obtained which accurately de-
scribes the magnetic field. By dissecting the hexahedron
at level ¢ — 1 into eight hexahedra at level g, every face
Fa~1 is replaced by four new faces F{,---, FJ.

The prolongation operator must fulfill the requirement
of flux conservation during the mesh refinement ®®
For this reason the magnetic flux across a face of an el-
ement from the coarse mesh must be equal to the sum
of the fluxes across the four replacing faces of the fine
mesh:

(Vx A)-dF = (Vx A)-dF - (3
G ;/F x A)-dF - (3)

Based on (3), we constructed the following prolonga-
tion operator that fulfills the requirement of flux conser-
vation () @);
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a1 0 1 0 0

a9 ) 0 1 0 0 Al

as (2| 0 1/2 1/2 0 As (4)
as 1/4 1/4 1/4 1/4 | | A4

ag 1/4 1/4.1/4 1/4

A; and a; in (4) designate the edge values of the coarse
and the fine mesh, respectively, as shown in Fig. 2.

The restriction operator R is chosen as the transpose
of the prolongation operator P, i.e.

[R] =c[P]".

The parameter ¢ in (5) is a constant used to speed-up
the performance of MGM @, The choice of ¢ in the case
of nodal elements was studied in reference (11). In the
next chapter of this paper we shall analyze the choice of
the parameter c for edge elements.

3.3 Algorithm of the ASGS Smoother The
choice of the smoother is crucial for the performance of
MGM. When nodal elements are used, smoothing is usu-
ally done by the Gauss-Seidel method. Unfortunately,
for edge elements the MGM with the classical GS has
a poor convergence. Therefore properly designed block
GS smoothers are used.

When the finite element mesh contains distorted ele-
ments with large aspect ratios, however, the edge MGM
with the Gauss-Seidel or its block variants converges
slowly or even fails to converge. To overcome this serious
drawback, we propose an edge element MGM in which
smoothing is done by the symmetric Gauss-Seidel accel-
erated by the conjugate gradient method. The algorithm
of this accelerated symmetric Gauss-Seidel smoother is

(12)~(14).

1. Given an initial guess xg, compute:
To =b—Dw0—U9:0
. Perform smoothing iterations (1 =1,2,3,---):

Dw; =ri_; — L{z_1 +w; 1)

¢ = Dw;
"= q;-fwz'
if (i.eq.1) then
6=0
else
B=7/72
endif
v = ¢i + Pui1
(D+U0)z=q
pi = zi + fpi—1
a=v/(p] (2v; — Dp;))
Y2 ="

Ty =Ti—-1 — QU;
Ti = Ti—1 — Py

L and U in this algorithm are the lower and upper trian-
gle of the global matrix, and D is the diagonal. Here r
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is the residual vector, z is the vector with the unknown
values of the magnetic vector potential and b is the right-
hand side. The results in this paper are obtained with
zero initial values of the magnetic vector potential, that
is o = 0.

The arrays w, v and p are auxiliary arrays, whose
starting values are zero. The superscript “I"” is used
for “transposed”.

The variables 3, v, and v, are parameters used during
the acceleration.

The scalar « in the above algorithm is an acceleration
parameter that speeds up the convergence of symmetric
GS. As seen, « is determined fully automatically during
the solution and its computation is not expensive. For
this reason we preferred the Conjugate Gradient accel-
eration to the Chebishev acceleration. The Chebishev
acceleration depends on parameters that are computa-
tionally expensive to determine for 3D problems, such as
good estimates of the smallest and largest eigenvalues of
iteration matrix .

Concerning the computational efficiency of ASGS, the
work required by the Conjugate Gradient acceleration is
small as compared to the work by the symmetric Gauss-
Seidel. Therefore, one iteration by the accelerated sym-
metric Gauss-Seidel is not much more expensive than a
simple symmetric GS iteration.

4. Analysis of the Efficiency of MGM with
ASGS

In order to analyze the efficiency of the MGM with
the newly proposed ASGS smoother, two examples of
application will be discussed.. The first example, shown
in Fig. 3(a), is a current-fed coil with iron core, sur-
rounded by a shield. The exciting current is 1 A and
the relative permeability of iron is 1000. The finite el-
ement formulation is given by (1). Edge hexahedra are
used. Due to the symmetry, only one eight of the coil is
analyzed.

This simple model allows to change easily the maxi-
mum element aspect ratio while retaining the same num-
ber of elements and edges in the mesh. It has been
shown that the convergence of MGM depends on the
maximum element aspect ratio (Rmax) rather than the
average mesh quality @ ® (®_ For this reason, we shall
use Rpyax as reference and not the average mesh quality.

To investigate the effect of the maximum element

(b) mesh with Rygx =15
Fig.3. Geometry and mesh of one eight of the coil.

(a) geometry



Table 1. Discretization data for the coil.

Level | No. of unknowns | No. of elements
1 2420 648
2 17404 5184
3 131720 41472
4 1024336 331776
1600
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Fig.4. FEffect of maximum aspect ratio on the so-
lution time.

aspect ratio on the convergence of MGM, meshes of as-
pect ratios from 1 to 100 are analyzed. The element
aspect ratio is defined as the ratio of the length of the
longest edge of the hexahedron to the length of its short-
est edge. Thus the mesh with Ry.x = 1 is composed
of cubes while the mesh with Ry, = 100 contains
highly distorted elements. Fig. 3(b) shows the mesh
with Rpax = 15. ‘

The numerical analysis is carried out by the V-cycle
and W-cycle MGM with four nested meshes detailed in
Table &. :

Fig. 4 compares the efficiency of MGM using ASGS,
the conventional MGM with GS and the scaled ICCG
method for meshes of different maximum aspect ratios.
All computations in this paper are performed on a 2 GHz
Pentium IV with 2 GByte RAM. The solution times in
this figure and later are only the time to solve the sys-
tems of equations, these do not include the times for pre-
processing, making the matrix and reading and writing
the data files in MGM.

Fig. 4 shows that MGM using ASGS and MGM with
GS result in similar solution times for meshes with
Rmax = 1. Such - cubic meshes, however, are usually
not used in the practical MGM, since they lead to unac-
ceptably large number of elements in the finest mesh. As
seen, the efficiency of MGM with GS decreases rapidly
with the increase of the maximum element aspect ratio.
The advantages of MGM with GS over ICCG are lost
for aspect ratios greater than 20. Moreover, MGM with
GS does not converge to a residual of 107° for maxi-
mum aspect ratios above 30. In contrast, the increase of
Rimax does not significantly deteriorate the performance
of MGM with ASGS. Fig. 4 indicates that V-cycle MGM
with ASGS is the fastest for all aspect ratios.

The results in the paper are with equal number of pre-
and post-smoothing iterations ng;. When cubic mesh is
used, MGM with ASGS is the fastest with ng = 2,
while MGM with GS is the fastest with ng = 1. With

—e— V-MG (ASGS
--o--- W-MG (ASGS)
—a— V-MG (GS)
---4-- W-MG (GS)

Solution ti

L
1 10 100 1000 10000
Relative permeability of iron

Fig.5. Effect of iron permeability on the solution

time.

(a) geometry (b) mesh
Fig.6. Geometry and mesh of one fourth of the
electromagnet.

the increase of the aspect ratio, ng; needs also to be in-
creased. At Ryax = 30 MGM with ASGS is the fastest
with ng; = 13, while MGM with GS is the fastest with
Ngi = 15. At Rpax. = 100 MGM with ASGS is the
fastest with ng; = 20.

In order to test the robustness of MGM with ASGS
against parameter variations, the relative permeability
of the iron core of the model in Fig. 3(a) is varied from
1 till 10000. The mesh with maximum element aspect
ratio Rmax = 15 shown in Fig. 3(b) is analyzed. Meshes
with such aspect ratio are common for the practical
MGM. The solution times for the different relative per-

‘ meabilities of iron for this mesh are given in Fig. 5.
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Fig. 5 shows that both MGM with GS and FEM with
ICCG are sensitive to the parameter variations, because
their solution times increase with the increase of the rel-
ative permeability of iron. In contrast, the proposed
MGM with ASGS is robust against parameter varia-
tions, since the computation time does not depend on
the iron core permeability.

The second example is an E-type ac electromagnet
shown in Fig. 6(a). The number of turns and resistance
of the exciting coil are 2700 and 232 (2, respectively. The
exciting current is 0.64 A and the air gap is 6mm. The
relative permeability of iron is 1000.

Having almost 2 million unknowns at the finest level,
this example allows to validate and to analyze the per-
formance of MGM with ASGS for large-scale problems.

Due to the symmetry, one quarter of the electromag-
net is analyzed. The FEM formulation is given by (1).

IEEJ Trans. |A, Vol.123, No.10, 2003
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Table 2. Discretization data for the electromagnet.

Level | No. of unknowns | No. of elements
1 4567 1260
2 33318 10080
3 254092 80640
4 1983768 645120

10" —e—— V-MG (ASGS)
---0--- W-MG (ASGS
_ 107+ —— V-MG (GS)
S 3 ---&~- W-MG (GS)
g 10 ICCG
é 10% -
10°
10° -
107 | L | ! | { | )
0 2 4 6 8 10 12 14 16
Number of cycles / iterations
Fig.7. Number of iterations for the electromagnet.
10
10"
_ 10?
8,3
5 10
é 10*
10°
10°
107 L I ! | 1
0 250 500 750 1000 1250 1500
Solution time (s)
Fig.8. Convergence rate for the electromagnet.

Edge hexahedra are used. The finite element mesh is
shown in Fig. 6(b). The maximum element aspect ratio
for this example is Ry = 15.

The numerical analysis is carried out by the V-cycle,
W-cycle and the full MGM with four nested meshes de-
tailed in Table 2.

The convergence behavior of the V-cycle and W-cycle
MGM applied to the electromagnet is shown in Fig. 7.
The results from Fig. 7 indicate that MGM with ASGS
needs the smallest number of cycles. There is no differ-
ence in the number of cycles for the V- and W- cycle
MGM. The scaled ICCG method is the slowest with 520
iterations. ‘

The solution times of the V-cycle and W-cycle MGM
are shown in Fig. 8. As seen in Fig. 8, MGM with ASGS
is the fastest among the methods. The V-cycle and W-
cycle MGM with ASGS result in close solution times.

For this model, MGM with ASGS is the fastest with
Thgq 8, while MGM with GS is the fastest with
Ngi = 17. '

Although the V-cycle and the W-cycle multigrid algo-
rithms are usually very efficient, the speed of MGM in
some cases can still be improved using nested iteration,

BH¥H/ D, 1234 10 5, 2003 £
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Fine mesh .
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f Prolongation
Coarse mesh ‘
Fig.9. V-cycle full multigrid algorithm with four
levels.
Fine mesh

Coarse mesh

Fig.10. W-cycle full multigrid algorithm with four
levels.
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Fig.11. Solution times for the V-cycle, W-cycle
and full multigrid using ASGS.

Residual

also called full multigrid (FMG) @ @9, In FMG the so-
lution on the coarse mesh is used as initial guess for
the approximation on the finer grid. The algorithms of
the V-cycle FMG (V-FMG) and the W-cycle FMG (W-
FMGQ) are shown in Fig. 9 and in Fig. 10, respectively.

Fig. 11 compares the solution times of the V-cycle,
W-cycle and full multigrid applied to the electromagnet.
Only MGM with ASGS is analyzed due to its superiority
to MGM with GS.

The results from Fig. 11 indicate that the V-cycle
MGM and the full V-cycle MGM yield almost the same
solution times that are 133.38s and 133.22s, respec-
tively. Hence in case of the V-cycle there is no significant
gain from the full multigrid method.

The solution times for the W-cycle MGM and the full
W-cycle MGM are 153.03s and 155.63s, respectively.
Therefore the W-cycle MGM is preferable to the full
W-cycle MGM. \

Next we shall try to speed-up the performance of the
edge MGM by changing the values of the parameter ¢ in
(5). Details about the proper choice of ¢ in the case of
nodal finite elements can be found in reference (11).

Fig. 12 shows the influence of the parameter c on the
solution times by the V-cycle, W-cycle and full multigrid
with ASGS applied to the electromagnet.
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Fig. 13. Solution time versus number of unknowns.

The results from Fig. 12 clearly indicate that the V-
cycle, W-cycle and full multigrid using ASGS are the
fastest for the value of parameter ¢ = 1.

The most time consuming part of the multigrid cycle
is the solution of the set of equations at the finest mesh.
Therefore in the next section the solution times of the
MGM with ASGS will be compared to MGM with GS
and the FEM with scaled ICCG for different number of
multigrid (MG) levels. As shown in Fig. 11, there is
no significant gain from the full multigrid method. For
this reason only the V-cycle and W-cycle MGM will be
analyzed. -

Fig. 13 compares the solution times of the different
methods applied to the electromagnet when the number
of multigrid levels is changed from 2 to 4.

Fig. 13 shows that when the accelerated symmet-
ric Gauss-Seidel smoother is used, the V- and W-cycle
MGM have stable and fast convergence rate and result in
similar solution times. When the Gauss-Seidel smoother
is used, however, the W-cycle MGM is slower than the
V-cycle and the difference in solution times increases
with the number of unknowns. This is due to the fact
that MGM with GS needs more cycles than MGM with
ASGS and the number of computer operations per-one
W-cycle is greater than that of the V-cycle, as seen in
Fig. 1.

Fig. 13 indicates that MGM with ASGS is faster than
the other methods even for only two MG levels with
33318 unknowns. With two levels the V-cycle MGM

Table 3. Discretization data for the electromagnet.

Computed force (N)
No. of MGM with | MGM with | FEM with
unknowns ASGS GS ICCG
33318 18.24 18.24 18.24
254092 18.64 18.64 18.64
1983768 18.93 18.93 18.93
Measured force: 20.1 (N)

with ASGS needs only 4 cycles (2.41s) to reduce the
residual by a factor of 1076, The V-cycle MGM with
GS and ICCG need 13 cycles (8.09s) and 125 iterations
(5.07s), respectively. .

When four levels with 1983768 unknowns are used,
MGM with ASGS is about five times faster than MGM
with GS and nine times faster than FEM with the ICCG
method. It takes only 4 cycles (163.42s) for the V-
cycle MGM with ASGS to reduce the residual by a
factor of 107%. The V-cycle MGM with GS and the
ICCG method need 16 cycles (859.59s) and 520 itera-
tions (1446.33s), respectively. Therefore it can be con-
cluded that the efficiency of MGM with ASGS increases
strongly with the number of unknowns on the finest
level.

Fig. 13 indicates that the solution time of MGM with
ASGS increases only linearly with the number of un-
knowns. This shows that MGM with ASGS has optimal
complexity.

5. Validation of MGM with ASGS

In order to validate the proposed MGM with ASGS,
the electromagnetic force acting on the movable arma-
ture of the electromagnet in Fig. 6 is computed and com-
pared with measurements. The force F' is obtained by
the Maxwell stress tensor method:

F = / vo [(Bn)B — 0.5B%n] d
S

S in (7) is a closed surface surrounding the moving ob-
ject, vg is the reluctivity of air, B is the magnetic flux

. density and n is an outward unit vector normal to the
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surface S. In our analysis S passes through the middle
of the air gap.

Thus the force FZ? of one finite element acting along
the z axis is:

F7? =v(n Bi+nYBY+n?BZ) B:—0.5B2nZ]S.

Se in (8) is the area obtained when intersecting the el-
ement with the integration surface. The superscripts z,
y and z designate the components along the three axes.
The total force is equal to the sum of the forces of all
intersected elements.

Table 3 shows the force computed by MGM with
ASGS, MGM with GS, FEM with ICCG and the mea-
sured force. The computed values of force by the V-
cycle, W-cycle and the full MGM were similar. There-
fore only one computed result is given for the different
MG algorithms in Table 3.

There is a good agreement between the computed and

IEEJ Trans. [A, Vol.123, No.10, 2003
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measured force in Table 3, which confirms the validity
of the proposed MGM with ASGS.

6. Conclusions

A fast edge element geometric multigrid method with
accelerated symmetric Gauss-Seidel smoother is pre-
sented. The convergence and speed of the V-cycle, W-
cycle and full multigrid method using this smoother are
analyzed. The performance of MGM using ASGS is
compared with that of MGM with Gauss-Seidel and the
FEM with scaled ICCG method. Unlike MGM with the
conventional Gauss-Seidel, the multigrid method with
the newly proposed accelerated symmetric Gauss-Seidel
smoother is robust against mesh distortion and param-
eter variations. MGM with ASGS is much faster and
needs less cycles than MGM with GS and FEM with
the ICCG method not only for large-size problems, but
also for problems with small number of unknowns and
levels. The validity of the MGM with accelerated sym-
metric Gauss-Seidel smoother is confirmed by comparing
the computed and measured force of an electromagnet.
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