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. Lightning protection measures are required for the railway signalling system because suspension and delays
of trains due to lightnings may cause social confusion. Therefore, we carried out experiments on propagation
characteristics of lightning surges along a rail, and injected a lightning surge current into the rail or wayside
ground to raise their potentials, in order to measure the lightning overvoltages on a level crossing for the
insulation design. There are no precedents that have carried out these experiments in the field until now.

We could obtain the following results.

(1) The surge impedance of the rail is 56 Q and the surge propagation velocity in the rail is 55 my/ ps.

(2) The surge attenuation depends only on the duration of wave tail of the traveling lightning surge
along the rail and decreases as the duration of wave tail becomes longer.

(3) TFlashovers may occur at the terminals in the equipment of the level crossing in case 1) a 2kA light-
ning surge current is directly injected into the rail, or 2) a 10kA lightning surge current is injected into the
wayside ground at a vertical distance of 2m from the rail.

(4) We can estimate the lightning overvoltages on the terminals in the equipment of the level crossing
according to the vertical distance from the rail of the lighting stroke and the level of the stroke current.
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1. Introduction

The railway signalling system has made remarkable
progress in recent years in electric railways with their
components becoming increasingly compact and multi-
functional due to the adoption of microcomputers and
other electronic devices in wide ranges. On the other
hand, burning of circuits, system-down, and other light-
ning damages on the railway signalling system frequently
occur because electronic devices are easily broken by
lightning surges.

The railway signalling system is widely installed at a
wayside and constitutes a network by being connected
each other with rails and cables. Accordingly, there are
a lot of parts that lightning surges can invade easily. In
addition, troubles extend to wide ranges in case of occur-
ing lightning damages on the railway signalling system.

Therefore, it is required to build up effective and eco-
nomical countermeasures for preventing lightning dam-
ages on the railway signalling system since suspension
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and delays of trains due to lightnings may cause social
confusion.

Since the railway signalling system is usually installed
at a wayside and directly connected to rails through ca-
bles, the rail can be one of the invasion routes of light-
ning surges to the railway signalling system. Therefore,
it is important to clarify propagation characteristics of
lightning surges along the rail in order to establish light-
ning protection measures for the railway signalling sys-
tem.

Accordingly, we carried out experiments on the fol-
lowing.

(1) Measurement of the surge impedance of the rail
and the surge propagation velocity in the rail

(2) Measurement of the surge attenuation ratio in
the rail

(3) Measurement of the wayside ground potential
distribution caused by the rail potential rise

Moreover, we temporarily installed an actual level
crossing, and injected a lightning surge current into the
rail or wayside ground to raise their potentials, in order
to measure the lightning overvoltages on the level cross-
ing so that we can obtain basic data for the insulation
design.

There are no precedents that have carried out these
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experiments in the field until now.
This paper describes the results of the above field
tests.

2. Outline of Field Tests

2.1 Test Section We carried out field tests be-
tween Ginzan and Shikaribetsu stations, Hakodate line
of JR Hokkaido. Fig.1 shows the test section. We se-
lected a non-electrified and single track section as the
test section because noises induced on rails could be re-
duced in the measurement. :

2.2 Railway Track Conditions Fig.2 shows
the line profile of the test section. A railway track con-
sists of rails, cross ties, a rail bed, and a track bed. This
test section consists of timber cross ties and a ballast
rail bed. The rail is basically insulated from cross ties
by rubber pads. The soil resistivity was 2,500 Qm at the
- wayside. The field tests were done on a fine day When
both the rail and rail bed were dry.

3.. Surge Impedance of the Rail and Surge
Propagation Velocity in the Rail

3.1 Measuring Method Fig. 3 shows an outline
of measuring method. The length of rail for measur-
ing is 329m. Two measuring rails are insulated from
adjacent rails by inserting insulated rail joints at both
ends as shown in Fig.3. A steep-front current gener-
ated by a pulse generator (PG) was injected into the
sending end of one side rail (for example the rail No.1 in
Fig. 3). Then, the injected current waveform (I), voltage
waveform of the rail No.1 (Vy), and voltage waveform of
the rail No.2 (Vi) were measured with an oscilloscope.
The self surge impedance of the rail No.1, mutual surge
impedance between rails No.1 and No.2, and surge prop-
agation velocity in the rail No.1 were calculated from
measured waveforms.

The same measurement as the above-mentioned was
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Fig.3. Outline of measuring surge parameters of
the rail

implemented with a steep-front current injected into the
rail No.2.

3.2 Measured Results The self and mutual
surge impedances of rails No.1 and No.2 are as follows.

(1 8)~(28) o

43 56

When the geometrical arrangement of two rails are
considered, the surge impedance matrix should become
a symmetric matrix. There is a little difference, however,
because of measurement errors.

Moreover, both the round trip surge propagation
times on rails No.1 and No.2 were 12 us. Accordingly,
the surge propagation velocity in the rail is 55 m/us.

As aresult, it is clarified that the self surge impedance
of the rail with timber cross ties and a ballast rail bed is
extremely low compared with that of an overhead line ™.
In addition, the surge propagation velocity in the rail is
18.3% of the light velocity and is similar to that in a
buried conductor @,

56.8 43.2
42.6 55.8

4. Surge Attenuation Ratio in the Rail

A lightning surge voltage of an arbitrary waveform
generated by a PG was impressed to the sending end
of the rail No.1 as shown in Fig.3. Then, the voltage
waveform of the rail No.1 (V) was measured with an
oscilloscope at the sending end. In the same way, the
voltage waveform of the rail No.1 (V,;) was measured at
the receiving end. Supposing that the impressed light-
ning surge voltage reflects perfectly on the insulated rail
joint at the receiving end, we defined the surge attenu-

ation ratio in the rail as Eq. (1).

(Surge attenuation ratio)
= (Wave crest of Vy5)/(2 x Wave crest of V)

1)

Namely, Eq. (1) indicates that this surge attenuation
ratio becomes lower as the attenuation of the lightning
surge voltage caused by traveling along the rail increases.

. The surge attenuation ratio in the rail was measured
as parameters of the duration of wave front (T¢) and
wave tail (T) of the lightning surge voltage impressed
to the rail No.1.

Fig. 4 shows the measured voltage waveforms of Vg
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and Vs when a 1/40 us lightning surge voltage was im-
pressed to the rail No.1. Fig.4 indicates that the wave
crest decreases and Ty becomes longer as a lightning
surge voltage travels along the rail.

Fig. 5 shows the measured results of T¢-dependence of
the surge attenuation ratio. On the other hand, Fig.6
shows the measured results of T¢-dependence of that ra-
tio. From Figs. 5 and 6, the surge attenuation ratio
depends only on Ty and increases as Ty becomes longer,
because the wave crest is decided at the wave tail in the
case of distorting the wave front of the voltage waveform
at the receiving end as shown in Fig. 7.

Although the soil resistivity of this test section was as
high as 2,500 Qm, it can be thought that the attenuation
of the lightning surge voltage caused by traveling along
the rail decreases if the rail is laid on the site with low
soil resistivity.

As a result, it is clarified that the attenuation of a
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lightning surge voltage caused by traveling along the rail
is extremely large compared with that of an overhead
line. Rails may have extremely high leakage conduc-
tance against the ground in comparison with overhead
lines.

5. Wayside Ground Potential Distribution
caused by a Rail Potential rise

‘5.1 Measuring Method Fig. 8 shows an outline
of measuring method. A rail potential rise was caused
when a 1/70 us lightning surge current generated by an
impulse generator (IG) was injected into Point A of the
rail No.1. Then, the potential rises of the rail No.1, rail
No.2, and wayside ground against a remote potential
electrode were measured with an oscilloscope at Points
A, B, and C, respectively. The measuring points are
illustrated by @ in Fig.8. They are indicated by the
horizontal distance for the rail from the current inject-
ing point (x=0m is Point A) and vertical distance from
the rail No.1 (y=0m is the rail No.1).

5.2 Measured Results Fig.9 shows the rela-
tionship between the potential rise of the rail or wayside
ground and the horizontal distance from the current in-
jecting point. The Y-axis of Fig. 9 indicates the potential
rises at an injected lightning surge current of 1 A (wave
crest).

Fig. 9 shows that there are few differences in the po-
tential rise of the rail or wayside ground between x=0m
and x=10m. However, the potential rises of the rail
and wayside ground at Points B and C are lower than
those at Point A. Thus, an injected lightning surge cur-
rent travels along the rail without attenuation for ap-
proximately x=10m, but attenuates as mentioned in the
chapter 4 when it travels further.

Moreover, the potential rises of the rail No.2 and
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wayside ground are induced in parallel with the potential
rise of the rail No.1. The potential difference between
the rail No.1 and the wayside ground at a vertical dis-
tance of 3m from the rail No.1 is approximately 80%
of the rail No.1 potential rise. This potential difference
may be charged in the ballast rail bed because it exists
for a vertical distance of about 3m from the rail with
very low conductivity compared with that of the ground.

Although the potential rises at y=0m and y=1m

when x=1m in Fig. 9 should theoretically be a half of the

self and mutual surge impedances of rails, respectively,
they became lower. It can be thought as the reason for
this result is that rubber pads between rails and cross
ties shown in Fig. 2 became contact electrically because
the voltage impressed to the rail raised in the measure-
ment of the wayside ground potential distribution higher
than the measurement of the surge impedances.

As aresult, it is clarified that the ground potential dis-
tribution near the rail is much different from that near
a buried conductor ©®,

6. Lightning Overvoltages on Level Cross-
ings ‘

6.1 Measuring method  Fig. 10 shows an out-
line of measuring method. An actual level crossing for
lightning surge tests was installed temporarily. A po-
tential rise of the rail or wayside ground was caused by
injecting a 1/70 us lightning surge current generated by
an IG into Point A of the rail No.1 or wayside ground
at a vertical distance of 2m or 5m from the rail No.1
as shown in Fig. 10. Then, the lightning overvoltages on
each part of the level crossing against a remote potential
electrode was measured with an oscilloscope at Points A,
B, and C.

For a lightning stroke, it is supposed that the fre-
quency of the wayside ground potential rise caused by
striking structures such as steel beams for supporting
feeders is higher than that of the rail potential rise
caused by directly striking rails. In order to simulate

a proximity lightning stroke as mentioned above, the ,

case of the wayside ground potential rise was tested.
Fig. 11 shows photographs of an electronic train de-
tector (HC type) (for short HC-TD) installed at Point
A and an electronic level crossing control unit (for short
LC-CU) installed at Point C. The HC-TD is a sensor
(directly connected to the rail for detecting trains to close
crossing gates, and the LC-CU is the main equipment in
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Fig.10. Outline of measuring lightning overvolt-
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(HC type)
Fig. 11.

(b) Electronic level crossing
control unit

Equipment of the level crossing

the level crossing for controling crossing gates, warning
lights, and speakers by the information of train detec-
tion from the HC-TD. Fig. 12 in the next page shows an
outline of connection on the equipment of the level cross-
ing. Lightning protection devices are also illustrated in
Fig. 12.

6.2 Measured Results

(1) Measured lightning overvoltage waveforms on
each part of the level crossing.

Fig.13 shows the measured lightning overvoltage
waveforms on the HC-TD and L.C-CU at a rail potential
rise. The Y-axis of Fig. 13 indicates the lightning over-
voltages at an injected lightning surge current of 1 A
(wave crest). The legends in Fig. 13 indicate the names
of measuring terminals (refer to Fig. 12 in the next page).

The lightning overvoltages on the HC-TD in Fig. 13(a)
are much higher than those on the LC-CU in Fig. 13(b).
Therefore, the potential difference between the HC-
TD and LC-CU generates. In this test, the lightning
surge currents injected into the rail are approximately
10 A to minimize the influence on the other operat-
ing system of railway. Accordingly, lightning protec-
tion devices illustrated in Fig. 12 could not perform. If
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rail potential rise

these lightning protection devices perform at a lightning
stroke, a lightning surge current flows from the HC-TD
to the LC-CU in order to reduce the potential difference
in between.

(2) Lightning overvoltages on the level crossing at a
proximity lightning stroke  Fig. 14 shows the measured
results of lightning overvoltages on each part of the level
crossing at a potential rise of the rail or wayside ground.
The Y-axis of Fig. 14 indicates the lightning overvoltages
at a lightning surge current of 1 A (wave crest) directly
injected into the rail for the rail potential rise, or at
a lightning surge current of 1A (wave crest) into the
grounding of 100 Q2 near the rail for the wayside ground

EHFER B, 123 % 115, 2003 &F

part of the level crossing becomes lower almost propor-
tionally as the current injecting point is set more distant
from the rail in the vertical direction.

Next, Fig. 15 shows the relationship between the light-
ning overvoltages on the power source terminals in the
HC-TD installed at Point A or LC-CU installed at Point
C and the vertical distance from the rail of the current
injecting point.

Supposing that the flashover voltage of the AC power
BX terminal in the HC-TD is 10kV, Fig. 15 indicates
that a flashover may occur at this terminal in case 1)
a 2kA lightning surge current is directly injected into
the rail, or 2) a 10kA lightning surge current is in-
jected into the wayside ground at a vertical distance
of 2m from the rail No.1. Therefore, it needs lightning

1311



10
= .\
= ! e AC power BX
g 0 ‘\:\4 x DC power B24M
E \
0. 01 . : . L A
0 1 2 3 4 5 6 [ml
Vertical distance from rail of
current injecting point
Fig.15. Relationship between the vertical dis-

tance from the rail of the current injecting point
and the lightning overvoltages on the power source
terminals of the level crossing

protection measures for this terminal. In this way, we
can use Fig. 15 to estimate the lightning overvoltages on
the power source terminals in the equipment of the level
crossing according to the vertical distance from the rail
of the lighting stroke and the level of the stroke current.

7. Conclusions

We carried out experiments on propagation charac-
teristics of lightning surges along a rail, and injected a
lightning surge current into the rail or wayside ground to
raise their potentials, in order to measure the lightning
overvoltages on a level crossing. There are no precedents
that have carried out these experiments until now.

The main conclusions are summarized as follows:

(1) The surge impedance of the rail is 56 Q and the
surge propagation velocity in the rail is 55'm/us.

(2) The surge attenuation depends only on the du-
ration of wave tail of the traveling lightning surge along
the rail and decreases as the duration of wave tail be-
comes longer.

(3) Flashovers may occur at the terminals in the
equipment of the level crossing in case 1) a 2kA light-
ning surge current is directly injected into the rail, or

2) a 10kA lightning surge current is injected into the
wayside ground at a vertical distance of 2m from the
rail.

(4) We can estimate the lightning overvoltages on
the terminals in the equipment of the level crossing ac-
cording to the vertical distance from the rail of the light-
ing stroke and the level of the stroke current. ‘

We will investigate methods of calculating surge
parameters of the rail that reflect these experimental
results. Moreover, we will ihvestigate surge analysis
models for level ctossings to develop lightning protec-
tion designs.
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