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Abstract the present paper investigates attachable robust compensators design for polytopic linear parameter varying (LPV)
plants using prior or real-time knowledge of the parameter. Based on each knowledge, this paper explores both robust LPV
system and robust gain scheduled system design method. Quadratic 1, gain performance framework and robust model matching
(RMM) strategy are combined to develop compensators. Namely, a RMM design method, that is, a practical approach to the
design of attachable robust compensators for the linear time invariant (LTI) plant, is extended for application to the LPV plant. A
design example and simulation results are presented in order to demonstrate the proposed method.
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1.

Introduction

In practical, nonlinear and/or time-variant dynamical systems
are widespread, and a certain class of them can be represented as
linear time varying (LTV) systems. Basic analysis and synthesis of
control systems for LTV systems has been examined in previous
studiesV~® . Recently LTV system design, including tracking,
robust control,
investigated comprehensively in several studies®~®_ However,
‘Unlike the linear time invariant (LTI) systems, few powerful tool
or algebraical frequency-domain description exists to solve LTV
problems. As such, a realistic and practical control system design
method for the general LTV system has not yet been completed.

Shamma & Athans?®?D formalized a certain type of nonlinear
system as a linear parameter varying (LPV) system. It is well
known that many practical LTV systems can be translated into
LPV form. For example, servos with time-varying parameters,
aircraft flying in various situations etc. are described as LPV. A
certain type of nonlinear system also can be translated into LPV

stabilization, optimization and

form by Jacobian linearization or quasi-LPV modeling. Shamma
& Athans also succeeded in developing a control strategy for this
system based on classical gain scheduled methodology. Basically,
this LPV control system design method, known as the frozen
parameter method, deals with only parameters that vary slowly
with time. Recently, significant progress has been made in this
area, and a unified H-infinity approach is being developed that is
reducible, to a linear matrix inequality (LMI) optimization
problem®12~ UM Compared to the classical gain scheduled
method, these approaches take into consideration the time-varying
nature of plants and grow out of ad-hoc interpolation. During the
last couple of years, tutorial paper and special publications
concerning this problem have appeared’® " The recent gain
scheduled method assures a quadratic H-infinity property and
robust stability for all possible parameter trajectories. In contrast
to LTV systems, gain scheduled approaches are applicable under
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assumption that the dependent parameters can be measured on-line
instead of prior knowledge.

In LPV control systems, nominal parameter trajectory can be
derived from prior or real-time knowledge, respectively, in LTV or
gain scheduled viewpoint. However, the nominal trajectory differs
from real trajectory because of modeling error, observation error
and so on. Thus, a robust control technique is needed to
compensate for this error. ‘

Turning now to robust control design method, a practical
approach to the design of attachable robust compensators has been
developed®~@" for the LTI plant. The principle behind this
method is robust model matching (RMM), which adjust ‘a real
plant with a robust compensator’ to ‘a nominal plant’ by
equivalent-disturbance attenuation without changing desirable
response to reference in two-degree-of-freedom control scheme.

In the present paper, RMM has been developed for application
to LPV plants in combination with quadratic L, gain performance
framework. A novel RMM is a unified approach for robust LPV
system and robust gain scheduled system, based on nominal LPV
plant derived from prior or real-time knowledge of the dependent
parameter. Since the additional robust compensator is designed
without information of previously designed controllers, moreover,
the robust compensator is constructed separately with the previous
controllers; novel RMM is applicable for any existing control
systems. Methods to test robust stability of the overall system for
feasible trajectories are also shown. A design example and
simulation results are presented in order to illustrate the proposed
method.

2. Plant Description

The notation used in this paper is as follows:
w e R : exogenous inputs (reference, disturbance, etc.)
xe R : state vector,
y € R* . measurable outputs,
u € R : control inputs,
ze€R" : controlled outputs,

o(t) = [6’1 ®, 6,@),-.0, (z‘)] e R time-varying parametric



uncertainty,
d e R* : equivalent disturbances representing influence on the
controlled outputs due to trajectory error between the real
dependent parameters and the nominal ones,
Iy & x k unit matrix,
Or, Oaxp : respectively, k xk ,axb zero matrix,
Co : convex hull,

Consider an LPV plant: P(6(f)) described by state space
equations as:

x(0) | (A@o(®) Bw(@() By | x(1)
2(0) | =| C2(0(t)) Duz(B@) Dus | W) | oo (1)
y(® Cy Dyy  Ogug | u(?)

Here state-space matrices have compatible dimensions. Moreover
we have the following assumptions.

(1) The state-space matrices A(0), Bw(6),C;(8), Dy;(6) depend
affinely on 0(r) .

(2) The real parameter O(¢)is not real-time measurable but
nominal one &y(¢) can be known in advance or on-line. Both
0 and @ vary in the same polytope ® of vertices
wy, W, 0y, N= 2" ; they can be expressed respectively as:

0() € @ =Colaw,, m,,-,0,}
= {ZN: a o, o)z O,ZN:a,(t) = l}

}
= {ﬁ: o, (Do, a, (1) =0, ﬁ:am(t) = 1}

(3) The pair (A4(6),C,) and (A(0),B,) are quadratically
detectable and quadratically stabilizable over @, respectively.
With above assumptions, the LPV plant is called polytopic
when it ranges in a matrix polytope. Namely, rewriting (1) with
(2), the nominal LPV polytopic plant P(6p) can be expressed as:

(A(BO) B(Qo)j ZN:"‘ » 4 B,
C6,) D@, ““\c b f

i=1

Dy

6,)e®=Co{m,m,, -,

N
0o, ()20, 0y, (1) =1

i=1

.......................................... (3)
4 B Alw;) B(w,)
Here, = .
C, D C(e,) D(w;)
* Also, the real plant P(8) can be expressed as:
A(9) B(O i A B
[ ©) ()j=za,-(t>( 1 J
cO) o)) ‘= ¢ D
N .
o, (1)20,) (1) =1
1=1
.......................................... (4)

3. Controllers Design

We present methods for designing controllers consist of two

1990

Wee—p —>
P(6,) z
u K y
Fig. 1. Nominal control scheme.

components. The one is a nominal controller that is designed
according to the nominal LPV plant to obtain stability and
desirable reference response property (We can also exploit
existing controller for this one). The other is a robust compensator
that is added in order to reduce the influence of parameter
perturbation due to the real parameter’s deviation from the
nominal one based on the method shown in reference (26).

3.1 Nominal Controller Design Consider control
scheme of Fig.1. Here, P(6) is weighted nominal LPV plant. A
nominal controller: K is designed to satisfy the following control
objectives:

1) Desirable property to reference for P(6p) ,
2) Stability for P(6p) .

For example, the quadratic L, gain performance strategy can be
applied to design the nominal controller. Design of this controller
is reduced to solve LMI optimization problem similarly
formulated by the method proposed in section five of reference
(14) for nominal plant P(6p) . We can obtain vertex state space
matrices of the controller, and then the resulting continuous
controller is led as:

(Ak (6y) Bk(éo))
C(6y) Di(6y)

N

D oy ()

i=]

(@@)&@j
Ce(®,) Dy(w,))

Remark:

1t should be noted, as to unstable LPV plants (1), we can adopt
gain or dynamic output feedback to make them stable due to
quadratic stabilizability®. These stable LPV plants are regarded
as controlled plants to design nominal controller and robust
COmpensators.

3.2 Robust Compensator Design Because the real
trajectory 6(¢) will differ from nominal ones: 8y (f) , the TPV
control system that consists of real plant of #(#) and nominal
controller of fg(f) may not satisfy the desired specifications
mentioned above. A robust compensator should be added into the
control system to recover the specifications.

In this subsection, we introduce the principle of robust model
matching (RMM) method briefly, and develop this method to
apply for LPV systems.

3.2.1 Principle of RMM We see the robust compensator
have structures separate from nominal control system compared
Fig.1 with Fig.2. Here, the augmented plant is composed of a real
plant : P and a robust compensator: R .

The philosophy of RMM is to make input-output property of
the augmented plant approaches to the nominal model, Namely,
the low sensitivity to external disturbance and modeling error.
This objective is achieved by means of rejecting the equivalent
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Fig. 2. RMM control scheme.

disturbance that represents the modeling errors. It must be noted
that unlike Fig.1, P,K and R are LTI system, and y € RE is
composed of z € R™ and Zz € RE™ . measurable outputs except
z, since we treat equivalent disturbance rejection to z by feedback
control with measurable output y .

The robust compensator: R(s) consists of following elements:
1.Observer of equivalent disturbances: R,(s),
2.Zeroing matrix; Rz(s),
2 Robust filter: Ry(s).

The observer
measurable variables, y and u .

calculates equivalent disturbances from
Zeroing matrix cancels the
effect of plant’s changes by minimizing transfer matrix of over all
system from equivalent disturbances to measurable outputs.
Because the R, multiplied by R is not always proper matrix, a
low-pass filter Ry called robust filter should eliminate
differentiators in them. Another purpose of the robust filter is to
consist disturbance rejection with robust stability.

Now we develop the RMM strategy to apply for LPV systems,
and explain design procedure.

3.2.2 Robust Compensator Design for Polytopic LPV
Systems Because there is no algebraic transfer function like
LTI system, unlike conventional RMM, we propose a robust
compensator based on state-space expression.

1) Observer: Ro,(6o)

The real signals around the plant can be expressed with the
nominal plant and disturbances as:

y = P(0)u = P(go Y d | e (6)

~ The vector d eR# represents the influence of trajectory error
on the measurable outputs, and called equivalent disturbance of
LPV plants.
The state space equation of the observer R, (6,) can be
derived from substituting (1) into (6) as the following:

S e (2”%(5%))

Besides, x, € RC stands for the states of the observer.

2) Zeroing element: R,(6o)

In RMM control scheme (Fig.2), robust compensator is
- constructed as shown in Fig.3. The role of the zeroing element is
to cancel the influence of the equivalent disturbance: @ on both
controlled output: z and measurable output: y, .

B¥WC, 123# 115, 2003 %
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Fig. 3. LPV plant with robust compensator.
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Fig. 4. Rearranged figure of Fig.3 except the observer.

Furthermore, corresponding output v, and v, , R;(6))
consists of two elements R;(6y) and R,2(6). The R;1(6o)
eliminates the influence of d to z and the Ryy(6h)
eliminates the influence of d to y, .

To do so, first, we design R;1(6b) to satisfy the following
bounded input/output map of the augmented LPV plant for all

possible trajectories as:

"2"2 < 7"d"2~ ............................................................. (8)

This problem can be illustrated simply to LFT (Linear
Fractional Transformation) structure as in Fig.4.
Here, state-space expression of G(6p) is expressed as:

(f) A(6y) O1g B, [ x()

Z(t) = Cz (Im > Omx(g—m)) Oqu d(t)

d(t t
Q) 04 I, 0 g LYz

Above G(6p) is produced from unweighted nominal plant, but
if necessary we can use weighting function that can be selected
based on a frozen time analysis and follows the same way as
conventional H-infinity synthesis.

Similarly to nominal controller design mentioned in subsection
3.1, we obtain vertex state space matrices of the compensator
R;1(8) , and then the resulting continuous compensator is led as:

(AZI(HO) le(go))_ia (t)[Azl(a)z) le(@i))
= oi

C,(6,) D,(8) i=1 Cyl@) Dy(w,)

concerning input d , outputs v and state x; (¢)e R,

After deriving R; , another zeroing element R;p that
produce signal v* added to y is'considered. We see that
the R;; with the following state space equation makes the
influence of equivalent disturbance don y, completely zero.



{xn} _ l: A4,(6) 0,14 }[le:l_k[ B,,(6,) :|d
xo Buczl (00) A(QO) xo BuDzl(eo)
Vi :[.ngzl —C:y[)z)l}_d .

Finally, zeroing element R, that is composed of R;; and R
can be derived as:

X1 ( 4,1 0) Ozlxlj [ B,1(65) j
(%J | \BuCab) AG)) \BuDn () ();ZIJ
Yz C1(6p)  Opg D;1(6,) °
(V;j [ Ogxz1 _Cyj ( g j

.................................... (12)

Here, x; = [xg"1 xZ ]T € R? stands for states of the zeroing
element. To convenient notation, we have following equations:

[ 4;160) Oy j [ B,1(6y) j
Az = > Bz = >
B,Cap)  AG) B,D1 ()
C Ca(6) 0,
CZ:[ vaz zl( 0) mxl and
sz* ngzl —Cy

(Do) _(Dat@)
=5 )-("17)

Remark: ,

The signal d does not always belong to L, signals. However, it
is well known that performance (8) is also effective to finite power
signal. Thus, design based on (8) is useful for most practical
cases.

3) Robust filter

In order to consist disturbance rejection with robust stability
and keep the closed-loop state-space matrix affine dependent on
O(t)or Op(t), a transfer function matrix called robust filter is
used. To satisfy these requirements, the robust filter should have
adequate band-width and be strictly proper as the form of

X 4y (va= By ) Xr
v = ( C I j 0 vz
v* Cﬁ)‘ atg v
........................................ (13)
X A(6) 014
% | 0y, A0,
x| B,(6,)C, -B,(6,)C,

7] {[ByDo(6))+ By D,n O)IC, —ByDo(0)+ ByoD(0)IC, ByCo(0)+B,.C,.(6,) 4

X
X
y=[C) 044 0gs 0, ] 5
Xy

1992

4. Robust Stability Analysis of Whole Closed-loop
System

Since robust compensator has a capability to make augmented
plant approaches to P(6p), it is reasonable to suppose that
over-all system including the robust compensator is robust stable.

The overall system is composed of double loop structure as
shown in Fig.5. Here, R(6p) = Rr(0o)R: ().

State-space function of }3(9,00) consists of real plant P(6) and
observer R,(6p) can be derived as:

e MEFR
HEERAH]

It must be noted that influence of don y, is completely
eliminated, thus, the lower loop consists of 13(9,90) and K
works unaffected by R(6p) . Therefore, if the robust stability of
upper loop (augmented plant) is assured, the robust stability of the
overall system is also assured.

The rest of this section, first we derive state-space expression of
the augmented plant. Then we show two ways to test the stability
of the augmented plant following the way described. in the
reference (16).

To convenient notation, the above equation also can be written
as:

i‘P = Ap(g(l‘))x}7 +Bpuc’y = Cpxp [T TR TR (16)

Here, x, = [xT x5 xL x?]r 0 =[07.0, 1 .

Augmented plant
BETRNCY P
vz
w > P6,6,) >z
wyl— | K |e—m W
Fig. 5. ‘Structure of whole system.
Ixz B u C Vi X Bu
0,, B,Cy |l x, B,
+ 0 U,
Az (90 ) : 0 xf X, Zxq
4, X |0z
................................................................................................. (1 5) .
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Then we show two ways to test the stability of this system. Note
that 4, (6 (£)) is affinely dependent on both 6(f)and 6o (?) .

4.1 Quadratic Stability The system is said to be
quadratically stabilizable via an dependent parameter if there
exists a (2[+z+f)x(2l+z+ f) positive definite matrix P
such that

PAP(§)+A£(§)P<O_ ........................................... (17)
Inequality (17) is reduced to be ‘similar  problem as
after-mentioned (19) with common matrix P .

4.2 Parameter-dependent Lyapunov Functions Less

conservative sufficient conditions for stability over the entire
polytope are as follows:

Since Ap(g) varies in the convex envelope of a set of LTI
models as:

A, 0)eCo(d,, 4) :{Zﬁ,(z)A, IO o,Z,B,(z) = 1} ,

we seek a parameter-dependent Lyapunov function of the form
V(x,B)=x'P(By1x where P(B)=pR++p, Py

If there exists symmetric matrices Py,---,Py2 , and scalars
ty =15 suchthat

T T
AP+ P].Al. +A1.Pl. + P;A] <2010y

Pj >[(21+z+f) L e (19)
tl.l I](]}ﬂ)
: . : <0,
T T v
for all i je{,2-- N2} | then the Lyapunov function

V (x, B) establishes stability of this system.
" Remark:

In order to check the stability of Ap (8), it is not necessary to
derive parameters: fi(1). Instead, we should find out B s that
satisfy (19) with given 4; s.

5. Example
“A classical example of parameter-varying unstable plant that
can be viewed as a mass-spring-damper system with time-varying

spring stiffness is considered. The state space equation of this
unstable unweighted LPV plant is as follows

0

_ 1 |
A0)= [— 05-050

Sl e

CZ:[_OI 8} =M 0], Dwzzm, Duz:m, Dy, =0.

Here the scope of nominal time-varying parameter #(f) is in
polytopic spaces ® := Co{-1,1}. Also, the nominal trajectory of
dependent parameter 0,(¢) , o, () and «,,(f) are assumed as:

6o = c0s(0.057)
ap1(H) =(1-6p)/2,

ap(ty=1-amn ().

T C, 123% 115, 2003 &
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5.1 Transferring to Stable LPV System Because the
plant is not stable, firstly, it should be stabilized. After some try
and errors, we found an output-feedback # = —6yto make the

1

above plant to a stable LPV plant as:
_|1 0
ool Ae=lo). =[]

c, =l o], Dwz:m, ajzzm, Dy =0.

0
A(‘g):[—s.sfo.se

C = |:B] 8:| ,

5.2 Nominal Controller Design To enforce the
performance and robustness requirements, we treat L, gain of
the map from w to z;, z less than ), as the following
inequality (23) and global asymptotic stability for all feasible
parameter trajectories 6 in the polytopic space @ .

WS
<

W,8K
Here S denotes maps from w to z.

The weighting functions were chosen in sense of frozen time
method as follows:

0.95+0.25

, W, =0.0045 .
s+ 0.0001
The gain diagram of the weighs is shown in Fig. 7.
Using standard software from the Matlab LMI toolbox"®, we
got controller vertex matrices as:

169 674 8904
Ay =|-277 —949 —14136|, B} =[-013 -0.09 022],
-223 ~0016 —9403

Cr =[28.6 917 16723] Dy =0,

173 694 8905
Ao =-283 —-981 —14137|,
—226 -0.037 -9403

BE, ~ Bf,,Cik2 =~ Ck1,Dip = 0

Fig. 6. Block diagram of the nominal control system.
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jwz)
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10
Frequency(radian/sec)
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= =
oe
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-
o
S

-
S}
£l

Fig. 7. Gain diagram of weighting functions.



Then the nominal controller can be constructed as:

(Ak Bk k1 Ak2 j .

R Q)
+ao, (1
Ce Dy Dy ; C

The H-infinity norm of the above optimal problem }, is 0.92
after 27 iterations of the algorithm.

5.3  Design of Robust Compensator

1) Observer

Observer of the base-equivalent disturbance R, is derived
from substituting (22) into (7) as

Bk2
Dk2

kel

Jreo2
=a, (1)

Ckl k2

. 0 1 0 0) x,
X
I:;j|= -65-056, 02 1 O||{u)| @27
-1 0 01 y
2) Zeroing element
According to the subsection 3.2.2, we consider the

minimization problem as (8). After some try and errors, the
following weighting function: £(s) was used in both d to d
and d to Z relation of G(6p) in Fig4 to obtain feasible
LMI.

k(s) N ........................ (28)

s+0.1

Using Matlab LMI Toolbox, solving for the zeroing element

yielded a performance level of y =1.03 after 13 iterations of the
algorithm, we got the optimization result as

95¢-2 —23e-2 -146 -235 0.69
0.15 L s w9 | 013
R 001 145 476 553 | 013
8$3¢~2 92e-2 076 -322 35
Crpyy =[-0.04 028 876 1608], D,, =o0.
And, Ar:12 ~ Arai, Brea12 = Brat,
Chp =[-85¢-3 o062 786 161],D, =0.
............................................ (29)

d (out put of the observer) and v, is given as:
A, B } [A B J A B
z =a (Z) Rz1l Rzll +a (t) Rz12 Rz12
[CRZI DRzl ° CRzll Rzll = CRZ]Z DR:]Z

Substituting (30) to (12), we can get Zeroing element
R, whose inputs and outputs are respectively d and (VZ,VZ*
as: :

—9.5e-2 232  -146 235 0 0
0.15 118 -13.5 —149 0 0
) 0.21 145 -4.76 553 0 0
Z 832 92e-2 0.76 322 0 0
0 0 0 0 0 1
-0.025+0.0164, 0.45+0.176), 8.3-0.454, 160+0.124, -6.5-0.59, -0.2
0.69
~0.13
0.13
B =357
0
0

1994

z

_[-0.025+0.0168, 0.45+0.176 8.3-0.438; 160+0.126, 0 0
= 0 0 0 - 0 -10p

3) Robust filter
In this case, after some try and errors, the robust filter was

chosen to tune control performance as:
i = -15 0 .+ 15 0 || v, vi_|1 0
7L 0 <1577 0 15 v, 'L 101

5.4 Stability Test of Whole System The common
P >0 satisfying (17) was not found for the AP(HN (#)) in this
case, but parameter-dependent F s satisfying (19) were found.
Each I, was12x12 positive definite matrix and omit here due
to lack of space.

5.5 Simulation Results The proposed method is
illustrated by indicial responses. Proposed control systems are
compared with nominal control system designed based on
reference (14).

Here, real parameter:changes more quickly than the nominal
one, which is tight situation for classical gain scheduling (frozen
parameter method).

X

Even if parameter changes quickly and deviates from nominal
ones, the proposed method shows near response with desirable
ones. From Fig.9, the response of proposed method has almost the
same property as nominal system.

e
2
o

(i)

=

’ Dependent parameters
o
o

10 3 0 50
time(s)

(i) Trajectory of real dependent parameter 9(f)=2.5 +cos(0.27)

(ii) Trajectory of nominal dependent parameter

Fig. 8. Parameter trajectories.
1.5
o
2 It ]
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3
© @

< ®)
o
e
£
505
[$)

0 I n

0 10 0 | 30 40 50

time(s)

() Control system without robust compensator; (b) control system
with robust compensator, (¢) nominal system. k

Fig. 9. Indicial responses.
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6. Conclusions

In the present paper, a new attachable compensator design
method that deals with the following issues has been proposed:
(1) Robust LPV system design,

(2) Robust gain scheduled system design.

The Robust Model Matching has been expanded to solve above
both problems for polytopic LPV plant. ‘

The problems are reduced to an optimization problem having
LMI constraints for the vertex matrix derived from LPV plants.
The robust compensator is designed using only information from
the nominal plant, so the robust compensator can be attached to
any types of existing control system. Methods to test robust
stability of the overall system with LPV plants for feasible
trajectories also have been shown. The design procedure has been
demonstrated in an example design, and the performance of the
proposed method has been examined.

(Manuscript received October 1, 2002; revised March 13, 2003)

References
(1) L. A.Zadeh and C. A Deser: Linear System Theory. McGraw-Hill (1963)
(2) A. Stubberud: Analysis and Synthesis of Linear Time-variable Systems.

Unuversity of California press (1964)
H. D’ Angelo: Linear Time-Varying Systems: Analysis and Synthesis. Allyn
and Bacon (1970)

3

(4) B. R Barmish: “Necessary and Sufficieni conditions for quadratic
stabilizability of an uncertain linear systems”, J. Optimiz. Theory Appl,
Vol.46, No.4, pp.399-408 (1985)

(5) K G. Arvamtis and P. P. N. Araskevopoulos: “Uniform exact model

matching for a class of linear time-varying analytic systems”, Systems &
Control Letters, Vol.19, pp 313-323 (1992) '

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan: “Linear Matrix
Inequality in Systems and Control Theory”, SIAM Studies in Applied
Mathematics, Vol.15, SIAM, Philadelphia (1994)

M. Chen. “A tracking controller for linear time-varying systems”, ASME J.
of Synamic Systems, Measurement, and Control, Vol.120, pp.111-116
(1998)

A. Feintuch: “Optimal robust disturbance attenuation for lmear
time-varying systems”, Systems & control Letters, Vol.46, pp.353-359
(2002)

A. Ichikawa and K Katayama' Linear time varymng systems and
sampled-data systems. Lecture notes in control and information sciences
265, Springer (2001)

T, S. Shamma and M. Athans: “Analysis of nonlinear gain-scheduled
control systems”. IEEE Trans on Autom.Control, 35, pp.898- 907 (1990)

J. S. Shamma and M. Athans: “Guaranteed properties of gain scheduled
control for linear parameter-varying plants”, Automatica, 27, pp.559-564
(1991)

G. Becker, A. Packard, D. Philbrick, and G. Blas: “Control of
Parametrically-dependent linear systems. a single quadratic Lyaponov
approach”, Proc. American Control Conf., San Francisco, pp.2795-2799
(1993)

A. Packard: “Gain-scheduling via lmear fractional transformation”, Systems
& control Letters, Vol.22, pp.79-92 (1994)

P. Apkarian, P. Gahinet, and G Becker. “Self-scheduled H mfinity control
of lipear, parameter varying systems. a design example”, Automatica,
Vol.31, No 9, pp.1251-1261 (1995)

P. Apkarian and P. Gahinet: “A convex characterization of gain-scheduled
H infinity controllers”, IEEE Trans. Autom.Control, 40, 853-864 (1995)

P. Gahinet, A. Nemirovski;, A J. Laub, and M. Chilali: LMI Control
Toolbox. Natick, MA: Mathworks (1995)

F. Wang and V. Balakrishnan: “Improved stability analysis and
gain-scheduled Controller synthesis for parameter-dependent systems”,
IEEE Trans on Autom. control, Vol.47, No.5, pp.720-734 (2002)

W. J. Rugh and J. S. Shamma: “Research on gain scheduling”, Automatica,
36, pp.1401-1425 (2000)

©

O]

®

®

10

an

12)

13)

a4

5
16)
an

18)

EHMC, 123# 11 %, 2003 &

1995

a9
(20)
@D

2)

(23)

@24

(25)

(26)

@n

- Wei Xie

and robust control.

Yuji Kamiya

Toshio Eisaka

D. J. Leith and W. E. Leithead: “Survey of gain-scheduling analysis and
design”, Int. J. Control, Vol 73, No.11, pp.1001-1025 (2000)

F.Wu. “A generalized LPV system analysis and control synthesis
framework”, INT.J. Control, Vol.74, No.7, pp 745-759 (2001)
International Journal of Robust and Nonlinear Control, Vol.12, Issue 9,
Special Issue on Gain Scheduling (2002)

T. Kimura, E. Tokuda, M. Takahama, and R. Tagawa' “Design of the robust
flight control system by realizable linear compensator”, 4744 Guidance
and control conference, pp.334-341 (1985)

R. Tagawa: “Robust Model Matching”, reprnt from 8% Society of
Instrument and Control Engineers Symposium on Dynamical System
Theory, 91-96 (1985) (n Japanese)

T. Eisaka, Y S. Zhong, S. Bai, and R. Tagawa: “Evaluation of robust
model-matching for the control of a DC servo motor”, INT J. Control,
Vol.50, No 2, pp.182-187 (1985)

Y. S. Zhong “Robust model matching control system design for MIMO
plants with large perturbations”, Reprint from 1 3™ JFAC World Congress, 1,
Pp.387-392 (1996)

A. R Yali and T. Eisaka. “Robust compensator design for exploiting
existing control system”, IEE Proc.-Control Theory Appl., Vol.147, No.1,
pp 71-79 (2000)

Y. S. Zhong: “Robust output tracking control of SISO plants with multiple
operating points and with parametric and unstructured uncertainties”, INT. J.
CONTROL, VOL.75, No.4, pp.219-241 (2002)

(Non-member) He received MS degree in
Computer Application Engineering in 1999
from Wuhan Technology of University, China,
and PhD degree from Kitami Institute of
Technology in 2003. Now he is researcher at

Jo—

Department of computer Sciences, Kitami
Institute of Technology. His research interests
are in control of linear time varying system

(Member) He received PhD degree from
Hokkaido University in 1977. He is currently
professor at Department of computer Sciences,
Kitami Institute of Technology. His research
interests are in robust control and
sampled-time system.

(Non-member) He received PhD degree from
Hokkaido University in 1991. He is currently
associate professor at Department of computer
Sciences, Kitami Institute of Technology. His
research interests are in robust control, control
system design and its application.





