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This paper describes an artificial immune network with multi-layered B cells architecture. It is not our con-
cern to reproduce with confidence any immune phenomenon, but to show that immune concepts can be used
to develop powerful computational tools for engineering applications. As an important result of our model
based on multi-layered B cells architecture, the network is capable of creating better immune response and
describing pattern category for arbitrary sequences of analog (gray-scale, continuous valued) input patterns,

as well as binary input patterns.
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1. Introduction

In recent years, the immune network discipline has
attracted biologists who are interested in modeling bi-
ological immune networks and physicists who envisage
analogies between immune network models and the non-
linear dynamical systems. The theoretical development
of immune networks was initiated by Jerne ), who con-
structed a differential equation to describe the dynam-
ics of a set of identical lymphocytes. After that, most
efforts have been made to put the network proposal
into mathematical terms @~ . Immune network con-
cept has also been incorporated into neural networks
in machines learning problems ®, in genetic algorithm
©~0D " in learning stimulus-response behavior 2 and
some other applications “® @4, However, in these re-
search the details how an immune response was con-

cretely applied on an engineering system were not seen.

In our previous work, an immune network based on
biological immune response network was proposed ¢%.
A class of immune networks has since been character-
ized as a system of recognition to arbitrary sequences
of binary input patterns, either 0 or 129~ However,
the models of those immune networks have the problem
that they cannot be applied to the large-scale analog
pattern classification. Since real life systems, such as
image, voice, often have higher radix data upon which
processing has to be made, it is an area of engineering
significance: ‘

Furthermore, the immune system is a complex of cells,
molecules and organs that has been proven to be ca-
pable of performing several tasks, like pattern recogni-
tion, learning, memory acquisition, generation of diver-
sity, noise tolerance, generalization, distributed detec-
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tion and optimization ®®. The powerful computation
capability may come from the immune system’s intrin-
sically multi-layered architecture *»~?%_  Based on the
immunological principles, new computational techniques
are being developed, aiming not only at a better under-
standing of the system but also at solving engineering
problems. In this paper, we focus our attention on the
immune system’s intrinsically multi-layered architecture
and propose a new artificial immune network with multi-
layered B cells architecture. This network is applied to
pattern classification problems and is shown to be ca-
pable of clustering arbitrary sequences of analog input
patterns, as well as binary input patterns into stable
categories. Computer simulations are used to illustrate
the system dynamics and its effectiveness.

2. Immune System

2.1 Immune Cells The immune system is a
complex of cells that are originated in the bone mar-
row, molecules and organs with the primary role of
limiting damage to the host organism by pathogens
(called antigens, Ag), which elicit an immune response.
Lymphocytes are small leukocytes that possess a ma-
jor responsibility in the immune system. There are two
main types of lymphocytes: B lymphocyte (or B cell),
which, upon activation, differentiates into plasmocyte
(or plasma cells) capable of secreting antibodies; and T
lymphocyte (or T cell). ‘

The B lymphocytes expresses, on its surface, receptors
highly specific for a given antigenic determinant. The B
cell receptors are a form of the antibody molecule bound
to the membrane, and which will be secreted after the
cell is appropriately activated. The another main func-
tions of the B cells include the production and secretion

* of antibodies (Ab) as a response to exogenous proteins
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like bacteria, viruses and tumor cells. Each B cell is
programmed to produce a specific antibody. The anti-
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bodies are specific proteins that recognize and bind to
another particular protein. The production and binding
of antibodies is usually a way of signaling other cells to
kill, ingest or remove the bound substance.

The T lymphocytes can be subdivided into three ma-
jor stibclasses: T helper cells (Ty), cytotoxic (killer)
T cells and suppressor T cells (Ts). T cells mature
within the thymus. Their functions include the regu-
lation of other cells’ actions and directly attacking the
host-infected cells. The T helper cells, or simply Ty
cells, are essential to the activation of the B cells, other
T cells, macrophages and natural killer (NK) cells. They
are also known as CD4 or T4 cells. The killer T cells,
or cytotoxic T cells, are capable of eliminating micro-
bial invaders, viruses or cancerous cells. Once acti-
vated and bound to their ligands, they inject noxious
chemicals into the other cells, perforating their surface
membrane and causing their destruction. Without their
activity, immunity would certainly loose control result-
ing in allergic reactions and autoimmune diseases.The
T cells work, primarily, by secreting substances, known
as interleukin (IL), lymphokines and their relatives, the
monokines produced by monocytes and macrophages.
These substances constitute powerful chemical messen-
gers. The lymphokines promote cellular growth, activa-
tion and regulation. In addition, lymphokines can also
kill target cells and stimulate macrophages.

2.2 Immune Response Specialized antigen pre-
senting cells (APCs), such as macrophages, roam the
body, ingesting and digesting the antigens they find
and fragmenting them into antigenic peptides. Pieces
of these peptides are joined to compatibility complex
(MHC) molecules and are displayed on the surface of
the cell. Other white blood cells, called T cells or T
lymphocytes, have receptor molecules that enable each
of them to recognize a different peptide-MHC combina-
tion. T cells activated by that recognition divide and se-
crete lymphokines, interleukin or chemical signals, which
mobilize other components of the immune system. The
B lymphocytes, which also have receptor molecules of
a single specificity on their surface, respond to those
signals. When activated, the B cells divide and differ-
entiate into plasma cells that secrete antibody proteins,
which are soluble forms of their receptors. By binding
to the antigens they find, antibodies can neutralize them
or precipitate their destruction by complement enzymes
or by scavenging cells. This represents the immune re-
sponse process, an outline of which is shown in Fig.1 ®%.

2.3 Multi-layered immune architecture Fur
thermore, the immune system’s architecture is intrinsi-
cally multi-layered, with defenses spread about several
levels (see Fig.2) ®®. For example, living body’s skin
works as a shield to the body’s protection against in-
vaders, either malefic or not. It is now recognized as
our body’s largest immunologic organ and immunologi-
cal mechanisms that are essential in protecting us from
sunlight, bacteria, fungi, viruses and all the things that
do not belong to our bodies. The skin has a complex,
multi-layered structure. The complex, intricate struc-
ture allows the skin to have many complex functions.
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2037

Antigen

Peptide

Activated
TH Cell

= Ab ®
Ts Cell “/
Fig.1. How does the immune system protect the

living body?.

Pathogens @ ﬁ * é—:?) O

Skin ><
Physlological
conditions X >< -
Phagocyte .

Immune response

. Lymphocyte

&.

Adaptive s \ r
e 0 Q
response

Fig.2. Multi-layer structure of the immune

system.

Multiple functions would not be possible without com-
plex structure. FEach layer of the skin expresses its own
unique reaction when disturbed. The three basic layers
of skin are epidermis (outermost layer), dermis (middle
layer) and subcutaneous tissue (deep layer).

3. Artificial Immune Network Model

Recent papers @®~(? have explored the ability of a
system of interaction between B cells and T cells to have
useful pattern category classification properties. These
models have been based on single layer B cells that are
not only different from real immune systems but also
confine the classification to binary patterns.

In this paper, we propose a new artificial immune net-
work with multi-layered B cells architecture. First we
suppose that each B cell involves three levels: Bl, B2
and B3 depending upon essential multi-layered immune
system. This makes the proposed model to include sev-



eral processing levels and the gain control system in B
cell layer. In the different position of B cell layer, B cell
can accept and transform the patterns from bottom and

signals from top and feed the processed results back to .

the bottom or top of B cell layer. This can strengthen
the remarkable recognition characteristic and the noise
elimination in the positive feedback circulation of B cell
layer.

In the meantime, we restrict our discussion on the in-
teraction between B cells and T cells only, although var-
ious cells participate in the immunity mechanism (im-
mune response). Fig.3 shows the principal elements of
the artificial immune network. :

In the following simple scheme, the interactions about
one cell within immune system are considered.

(1) Ag(input) —B cell (—B1 —B2 —B3) — Output

When antigen (Ag) invades living bodies, it can be re-
garded as an input to the immune network and taken in
by B cell, i.e., antigen insults living body and presents
on the surface of skin.

First in level B1, not only the stimulation to living
bodies from the specific antigen can get a buffering but
also all the information about it will be gathered and

_normalized, then new rearranged information can be
given to level B2 as an output of level B1. For exam-
ple, epidermis sends a signal to each underlying skin
layer which type of inflammation is needed for protec-
tion against ”insult”.

Second in level B2, variety of information from level
Bl and level B3 about Ag will be transformed, com-
pared and saved. Just as the dermis is the major part
of the skin, level B2 plays an important role, too. Here,
the information about antigen can be normalized once
again before it arrives at level B3.

Finally in level B3, which is connected to level B2, en-
codes the high level abstraction of the information, and
transfers it to Ty cell.

The artificial immune network model.

Fig. 3.
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(2) Output — Ty cell — IL+
Ty cell can recognizes the antigen information from
B cell and secretes the interleukin (IL+) that activates

. the immune response.

(3) IL+ — B cell — Antibody (Ab)

The interleukin (IL+) becomes the second signal to
the B cell. Once B cell recognizes this signal, it divides
into antigen synthetic cells (plasma cells), and then syn-
thesizes and secretes the antibody finally. Here, B rep-
resents both B cell and plasma cell.

(4) Antibody — Ts — IL-

If the antibody excludes the antigen, we can say that
the immune of living body is effective. At this time, the
suppressor T's cell will be stimulated to secrete suppress-
ing interleukin (IL-) to suppress the immune response.
The immune response is finished as long as the genera-
tion of the antibody stops.

According to the immune response process mentioned
above we can obtain three important features about our
network:

a. If we consider antigen as an input and antibody as
an output, the output is determined not only by B cells
but also by the interaction between B cells and T cells.

b. B cells including B1, B2 and B3 levels plays an
important role in normalizing antigen information and
presenting the feature of the antigen input.

c. Ts cells can adjust the sub-system constructed by
B cell layer and Ty cell layer.

4. Algorithms

This section describes the algorithms in details, and
the formulation of the following is derived from the con-
ceptual model mentioned above.

Fig.4 shows the proposed immune network with multi-
layer B cells architecture. The model consists of three
cell layers, a B cell layer, a Tq cell layer, and a Ts cell
layer. B cell layer involves B1 level, B2 level and B3
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Fig.4. An artificial immune network with multi-layered
B cells architecture.
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level. The antigen corresponds to input and antibody
to output. In the meantime, we assume the number of
cell as IV in B cell layer and as M in Ty cell layer.

We assume input Ag as a vector I in this immune
system. It is a N dimensional vector, and its N's com-
ponent vector corresponding to IN’s processing units in
B cell layer are I, I2, . .., Iny. Each unit corresponds a B
cell column and each B cell column involves three levels,
B1 level, B2 level and B3 level.

In each B cell column, for example the ith B cell col-
umn as shown in Fig.4, B1; cell and B2; cell , B2;
cell and B3; cell are connected with the weights: wi,
(Bli — B27,) and w§1 (_BQz — Bli), w§3 (BQ,L — B3z)
and wi, (B3; — B2;), respectively. They form two feed-
back circuits. Note that each B cell here has two impor-
tant functions: producing the sum of the weighted in-
puts and applying it to a nonlinear activation function.
Of course, it is highly desirable (but not mandatory) to
normalize all input vectors before applying them to the
network. This is finished through dividing each compo-
nent of an input vector by that vector’s length. This
length is found by taking the square root of the sum of
the squares of all of the vector’s components defined by
[|X]]. In symbols

ZE/_ Zq _ Tq
X (@43 42

This converts an input vector (z1,za,...,zy) into a
unit vector pointing in the same direction; that is, a
vector of unit length in N-dimensional space.

Consider the ith B cell column. The B1; cell receives
the input signal I; and the signal of B2; with the weight
why, computs the summation of the weighted inputs sim-

ply as
Bl; = I; + why B2

/

?
where B2} is the normalized summation of the B2 cells:

B2; B2;

B2 = = 2 P 2
[|B2|| (B2f+ B2:+...4+ B2%

)1/2 -(3)

Then, the Bl; signal is normalized to be
||B1]] ~ (B12 4 B12 +...+ B1%,)1/2

Bl = (4)

and usually further processed by an activation function
F to produce the cell’s output signal, Of.

0%1' = F(B1)) e (5)

where the function I’ may be a simple piecewise linear
function,

v

where 6 is a threshold vigilance. The output O? is then
applied to B2; cell with the weight wi,.

Similarly, B2; cell computes the summation of the
weighted inputs from B1; cell and B3; cell.

x
0

ifw=>0
fo<z<b

B2; = wi, O] +w}y O3

BF5H C, 1234 115, 2003 F
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and its normalization form B2 (equation(3)) is fed to
B1; cell and B3; cell.

B3; cell receives the normalized signal B2; from B2;
cell with the weight w}, and feedback signal from Ty
cell, computes the summation

where d(0 < d < 1) is feedback parameter from Ty cell
layer and w,; is the weight from the jth Ty cell to ith
B3, cell. B3; cell then normalized to be

B3; B3;

B3, = = 2 2 2
||B3]|] (B3%+ B33+...+ B3%

)1/2 ' (9)

then processed by the piecewise linear function F
COL = F(B3}) v (10)

and fed to B2; cell.

Meanwhile, B3; cell whose activity is sufficiently large
generates excitatory signals along pathways to target
cells at the next processing stage Ty cell layer. Ty cell
layer is the category representation field, its key prop-
erties are contrast enhancement of the filtered antigen
pattern, and reset, or enduring inhibition, of active Ty
cell layer cells.

Contrast enhancement is carried out by competition
within Ty cell layer according to winner-take-all rule.
Choice is the extreme case of contrast enhancement.
Ty cell layer makes a choice when the cell receiving the
largest total input quenches activity than all other cells.
In other words, let T; be the summed filtered antigen
input to the jth Ty cell in Ty cell layer:

T; =Y B3wi, (j=M+1...N)
[

Ty cell layer is said to make a choice if the j*th cell in
Ty cell layer becomes maximally active, while all other
cells are inhibited, then

Tje =maz{T; :j=M+1...

At this time Ty cell which has the value of Tj« can
secrete interleukin (IL+). The interleukin (IL+) is then
weighted and sent back to B cells once again by the
pathway of wj;. We call it memory pattern.

The interleukin (IL+) becomes the second signal to B
cells. Once B cell recognizes this signal, it divides into
antigen synthetic cells (plasma cells), and then synthe-
sizes and secretes the antibody finally. Here, antibody is
regarded as the similarity between the input vector and
memory vector and we compute the similarity as follow.

ri = (B2, + ¢ B3;)/(e+||B2|| + ¢||B3||)---- (13)

where, ¢ is constant, 0 < ¢ < 1, e is a positive real num-
ber, e € 1. The Ty cell layer can be reset whenever an
input pattern is active and

0
—_— >
e+ |l

where the vigilance parameter p is set between 0 and 1.



If the two patterns differ by more than the vigilance
parameter, a reset signal is sent to disable the firing unit
in the Ty cell layer. The effect of the reset is to force
the output of the Ty cell layer back to zero, disabling
it for the duration of the current classification in order
to search for a better match. Namely, in this case in-
hibitory interleukin (IL-) is secreted from Ts cells. The
inhibitory interleukin (IL-) tends to suppress Ty cells
that secrete the excitatory interleukin. Thus, a new
competition in Ty cell layer occurs. _

If the two patterns differ by less than the vigilance pa-

rameter, the memory pattern must be searched, seeking,

one that matches the input vector more closely, or fail-
ing that, terminating on an uncommitted cell that will
then be trained. That is to say, the winner j*th Ty cell
is accepted and it represents the category of this kind of
antigen, i.e., the recognition for this kind of antigen is
successful. And then the network enters a training cycle
that modifies the weight w;; and wj;.

Training is the process in which a set of input vectors
are presented sequentially to the input of the network,
and the network weights are so adjusted that similar
vectors activate the same Ty cell. If the same antigens
invade once again, the immune response can be activated
by the network recognition rapidly; a large quantity of
antibodies is generated in a very short period (the sec-
ondary immune response). The adjusting weight equa-
tions can be given ‘

wj*i:d(B?)iwj*i)""""" .............. ‘..(15)

with 0 < d < 1, for all j # j*.
The following procedure describes the proposed algo-
rithm.

Step 1: For all 4 and j, set initial weights: w;; and
wyi, why and why, wi, and wis.

Step 2: Using equations (1)-(10), compute output of
the B cell layer.

Step 3: As B cells reach stable state, they send sig-
nals to the Ty cell layer. The inputs to the Ty cell
layer are computed by equation’ (11).

Step 4: Use equation (12) to find the maximally ac-
tive 7%th Ty cell.

Step 5: Compute the similarity (Ab) between the in-
put vector and the memory vector by equation (13)
‘and check if to reset or not by equation (14). If reset,
return to step 4 until reset does not occur. Otherwise,
go to next step. -

Step 6: Update weights by equations (15)(16).

Step 7:  Go to step 2 for next input pattern.

5. Simulations

The simulations on the proposed artificial immune
network are described in this section to test its effective-
ness and the system dynamics. Our computer is Intel(R)
Pentium(R) 4, CPU 3.06GHz, memory 512MB; OS:
Windows 2000(Japanese), and the program was com-
piled by Microsoft Visual C++ 6.0. Antigen is regarded
as an input in our simulations. In order to express the
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Table 1. The parameters of our simulations.

M 0 d
20 | 0.3 0.9

N
10

c
0.225

e
0.000001

complexity and diversity of antigen, a pattern set con-
sisting of 20 arbitrary sequences continuous valued dif-
ferent patterns is presented in different random-*orders.
Pattern values are taken from the interval [0.1,1.0]. The
parameters of Table 1 are used in the simulations.

Our supposition starts when the network has not
memorized any pattern yet, but B cell and Ty cell all
are in the static condition. In order to avoid activating
a cell that has never been memorized, it is necessary to
initialize the weight to be small values for B cell and Tx
cell. Thus, for all 7 and j we let the weights be

1 1
C(1-dYN 0110
Reset must be inhibited while a new category is being
established. This can be accomplished by making all

wj; small before any learning occurs; in particular, we
let the initial values of w;; satisfy:

In addition, in order to express the inputs better, we
set the weights:

T S
Wiy = W3 = 1.

Consider that setting w, and wi, smaller has the
effect of weakening the importance of the expectation
feedback relative to the inputs, we set the feedback
weight a large value:

why = why = 10.00

5.1 The process of system response Fig.5
illustrates a typical process of system response with
p = 0.980. In Fig.5, each row shows that the proposed
system response to a sequence of 4 input patterns (A,
B, C and D) presented in the order ABCAD on learning
trial 1-5 (left) and on recognition trial 6-10 (right). Two
graphs are depicted for each trial: the top graph shows
the input pattern (A, B, C and D) and the bottom graph
shows the memory pattern at the end of the trial. The
category number, the value of T;« (by equation (12))
and the value of similarity (by equation (13)) are shown
beside the memory pattern graph respectively.

On trial 1, input A establishes category 0. It is nec-
essary to note that pattern A is enhanced contrastively
between B cell layer and Ty cell layer, due to the fact
that the pattern troughs are below the noise level de-
fined by the signal threshold (equations (6)). In fact, 8
is set equal to 1/+/N = 0.3 in our simulation. This is
the level at which uniform patterns are treated as pure
noise but any nonuniform pattern can be enhanced con-
trastively and stored in the memory of B cell layer and
Ty cell layer. On trial 2, pattern B, which shares all its
features with A, first searches category 0. The high vig-
ilance level leads to the Ty cell layer reset, and pattern -
B establishes the new category 1. On trial 3, pattern

IEEJ Trans. EIS, Vol.123, No.11, 2003
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Fig. 5.

C also searches category 0; having nothing in common
with pattern B, it then goes directly to an uncommitted
cell and establishes category 2. When pattern A is again
presented on trial 4, it directly accesses its original cat-
egory 0. On trial 5, pattern D searches category 2, then
category 1 and 0, then establishes the new category 3.
Learning is stabilized on the first trial. Thus, on the
second set of trials, when A, B, C and D are again pre-
sented on trial 6-10, they directly access their original
categories 0, 1, 2 and 3. The categorization is stable, or
consistent, in the sense that each pattern recognizes its
unique category immediately every time it appears.

5.2 Immune Memory Fig.6 illustrates match-
ing process of pattern R in detail(primary response).
The first row on matching 1 shows the response of the
memory pattern A (category 0) to the input pattern R
(stimulus). The input pattern and memory pattern are
matched and the similarity value of e + ||r|| between
them is computed to be 0.974. Because the system vigi-
lance is 0.980, the similarity (0.974) is less than vigilance
(0.980). It suggests that the input pattern R is not be-
long to category 0. Therefore, category O is suppressed,
namely IL- is secreted. The second row on matching 2
shows the response of memory pattern B (category 1) to
the input pattern R. In the same way as the first row,
two patterns are matched and similarity between them
is computed to be 0.963. It is also less than system vig-
ilance. Therefore, the category 1 is suppressed, too. It
is repeated in the third row on matching 3 for the re-
sponse of the memory pattern C. In the fourth row on
matching 4, category 3 responses to the stimulus. The
similarity is computed to be 0.998 that is bigger than
the system vigilance (0.980). Thus, the input pattern R

TP C, 123 % 11 5, 2003 &£
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System matching processes with input pattern A, B, C and D.
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Fig.8. The simulated primary response and sec-
ondary response.

is classified into this category 3. The fifth row shows the
adjusted memory pattern in category 3. When the input
patter R is presented again, as shown in Fig.7, there is
no matching process. Input pattern R accesses its cat-
egory 3 directly. This illustrates the immune network’s
performance on immune memory function. The immune
memory is a function that once a person caught a sick-
ness like measles, will not become sick even the same
virus infects him (her) once again because immune sys-
tem has powerful exclusion capabilities. Namely, If the
same antigen invades once again, the immune memory
cells can divide into plasma cells rapidly, and a large
quantity of antibodies are generated in a very short pe-
riod. It is called secondary immune response. A sample
of pattern R for this function is illustrated in Fig.8.

5.3 Influence of the Classification of the Sys-
tem by Parameter p One simulation to illustrate
system dynamics is summarized in Fig.9, which shows
how the architecture has quickly learned to group 20 in-
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puts into 14 stable recognition categories within 0.016
seconds while we let the vigilance parameter p = 0.980
and the other parameters are the same with Table 1.
On the first trial, we input pattern A. Pattern A is
presented in the B cell layer first, i.e., antigen is taken
in by B cell and is presented in the B cell layer.
Among the B cell layer, the input data is presented
at Bl level first, and Bl level is iterated 10 times un-
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til all the values stabilize. B2 level is then iterated for
10 iterations until its values reach equilibrium. Finally,
another 10 iterations are performed simultaneously with
the B cell layer and the Ty cell layer until equilibrium
is achieved, testing for reset. In all these loops, test
runs confirmed that 10 iterations were plenty for equi-
librium to occur. Because the network has not remem-
bered any other pattern, pattern A is very easy to learn

IEEJ Trans. EIS, Vol.123, No.11, 2003
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Fig.9. Category grouping of 20 input patterns into 14 recognition categories with p = 0.980.
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Fig.10. Category grouping of 20 input patterns into 10 recognition categories with p = 0.850.
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successfully. At this time, the value of e + [|r|[(=1.00)
is bigger than p(=0.980), pattern A establishes category
0. Learning of the stabilized pattern follows by updat-
ing the weights of w;;) and (w,;), and B cell layer is
re-computed with the new values. This procedure is re-
peated for 1000 iterations, which was sufficient for equi-
librium to occur. The algorithm is now ready for next
input pattern until the last input pattern T establishes
its own category.

In another simulation we let the vigilance parameter
p = 0.850, the same system as used in Fig.9 has grouped
the same 20 inputs into 10 recognition categories within
0.015 seconds (Fig.10). For example, that categories 7
and 12 of Fig.9 are here joined in category 5.

All other things being equal; higher vigilance imposes
a stricter matching criterion, which in turn partitions
the input set into finer categories. Lower vigilance toler-
ates greater top-down/bottom-up mismatches at B cell
layer, leading in turn to coarser categories. In addition,
at every vigilance level, the matching criterion is self-
scaling: a small mismatch may be tolerated if the input
pattern is complex, while the same featural mismatch
would trigger reset if the input represented only a few
features.

5.4 Influence of the Classification of the Sys-
tem by Parameter 6 (noise)
rameter @ to observe the classification situation of all
input patterns. All parameters except 6 are as in Fig.9.
The classification result is shown in Fig.11. It shows that
20 input patterns are grouped into 20 categories when
# = 0.0. But, as we have known, the same 20 input
patterns are grouped into 14 categories when 6 = 0.3 in
Fig.9.

‘Here, the threshold parameter 6 is set to 0.0 so that
the signal function F' in equation (5)(10) is linear. The

mune network with multi-layered B cells architecture
and tested its system dynamics by computer simula-
tions. According to our simulations, the proposed net-

. work is able to solve the problem of restricted input that

Now, we change pa- -

B cell layer therefore loses the properties of contrast -

enhancement and noise suppression. Even though the
feedback weights wh;, wi, and parameter d are all large,
mismatched features in input patterns are never elimi-
nated.

6. Conclusions

In this paper, we have proposed a new artificial im-
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exists in our previous work ®® and has several useful
properties:

a) It is able to learn a stable recognition code in re-
sponse to an arbitrary sequence of analog input patterns
as well as binary input patterns.

b) It carries out a parallel search in order to regu-
late the selection of appropriate recognition codes dui-
ing the learning process, yet automatically disengages
the search process as an input pattern becomes familiar.
Thereafter the familiar input pattern directly accesses
its recognition code no matter how complex the total
learned recognition structure may have become.

¢) A given class of analog signals may be embedded
in variable levels of background noise. A combination of
normalization and nonlinear feedback processes within
the B cell layer determines-a noise criterion and enables
the system to separate signal from noise.
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