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The propagation of lightning electromagnetic radiation over a lossy ground has been investigated numerically with the
combined use of a newly developed computer algorithm for Sommerfeld integrals and the fast numerical inverse Laplace
transform. The transmission line model has been adopted as the lightning current model and we have dealt with lightning
discharges with sharp initial peak. The dependences of the radiation fields (especially horizontal electric field) on ground
conductivity, distance etc. have been extensively studied, with a special reference to its comparison with previous approximations

by Zenneck and Cooray and Rubinstein.

Based on these comparisons, we have found that our numerical methods are effective

when calculating the radiation field from the lightning for any combinations of the parameters including ground conductivity,

distance etc.

Keywords : Lightning discharge , transient radiation, lossy ground

1. Introduction

The direct coupling of external electromagnetic waves like
lightning discharges to the transmission line is a well-known
fundamental problem in EMC [see some latest papers by
Diendorfer (1990), Omid et al.(1997a), Rachidi et al.(1996) and
references therein]. In addition to this direct coupling, there
exists another type of electromagnetic coupling; that is, the
induction by a lightning discharge struck very close to the power
transmission line, which is becoming serious in power engineering
field. This problem reduces essentially to that of propagation of
transient lightning radiation over an imperfectly conducting
ground. Furthermore, this problem also attracts attention in the
field of lightning research because of the presence of
sub-microsecond phenomena of initial peak of the electric field
change due to the lightning return stroke (Weidman and Krider,
1980). :

The study of the effect of finite ground conductivity on the
electromagnetic radiation from a dipole was first published by
Sommerfeld (1909). Then Banos (1966) treated the complete
problem of the electromagnetic radiation of a dipole by
determining the solution of Maxwell's equations for both air and
ground media with taking into account the boundary condition.
The resulting equations are obtained in frequency domain and are
given in terms of slowly converging integrals (Sommerfeld
integrals). Different numerical techniques (e.g., Kuo and
Mei, 1978; Mosig, 1989; Ichikawa and Karasudani, 1989; Omid et
al, 1997b) and analytical approximations (Norton, 1937;
Bannister, 1984) for the Sommerfeld integrals have been proposed,
but we have to note that such a formulation requires a.prohibitive
computer time. Zeddam and Degauque (1990) have discussed
some sophisticated approximations to the rigorous theory, in
particular the Norton's and the Bannsister's approaches and have
defined their validity limits in terms of frequency and distance of
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the observation point to the lightning channel. Recently, Cooray
(1992) and Cooray and Scuka (1998) have made the extensive
study on the comparison of different approximations.
it is highly desirable for us to estimate the numerical integrations
for any combinations of arbitrary parameters (frequency,
distance, ground conductivity etc.) (Ichikawa and Karasudani,
1989). This paper reports on the exact numerical evaluation of
the electromagnetic fields over a lossy ground for a realistic
lightning current source (transmission line model) by improving
the computational methods and we present the numerical results as
a function of different parameters. Then we compare our
numerical computational results with previous approximations
(Zenneck, and Cooray-Rubinstein (Cooray, 1992; Rubinstein,
1996; Cooray and Scuka, 1998) approximations) and we discuss
their validity limit. Finally we recommend you to use the present
numerical computaions for this problem because we have reduced
computer time by means of newly developed computation
algorithms described in this paper.

However

2. Formulation and Numerical Computations of
Electromagnetic Fields Radiated from a Lightning
Discharge above a Finitely Conducting Ground

Fig.1 illustrates the geometry used in the field calculations, in
which the lightning channel is a vertical dipole with the top height
of H. We use the cylindrical coordinates (r; @ z), and z=0 is the
boundary between the two media; the space of z>0 (medium 1) is
free space (dielectric constant &=g, permitivity =gy,
propagation constant k), and z<0 (medium 2), the finitely
conducting ground (g, = g¢€; (€, relative dielectric constant), s, =
1, conductivity o,  propagation constant k. The
electromagnetic fields detected at the observing point P(height =h)
are the summation of the elementary fields due to the small
electric dipoles over the whole lightning channel. We here show
the expressions of the vector potential induced at the observing
point P due to an elementary short dipole located between z=z
and z=z+dz (Sommerfeld, 1909) as follows;
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Fig. 1. Geometry of the problem (A lightning discharge is of

the transmission line model, and an observing point is located
at the point P. Medium 1 is free space, while medium 2 is the
- conducting ground)

where d47 is the vector potential when the ground is a perfect
conductor and d4” is the correction term due to the presence of
the finitely conducting ground. These two terms are expressed as
follows,

e =l @z [exp(— JER) exp(—jklR‘)J ________________ @
z 27[ R RV
dA? -= H °I(z)dz_[ J, (ur)exp[—u](z+h)] LA ®
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where & =-£,u,5’(s: complex frequency), &2 =—zg,u,s*+0u,s |
uy=u'+k) L ul=ut+k> , R*=(z—h)*+r?, RP=(z+h)* +r
(see Fig.1) and Jj is the first-kind Bessel function with Oth order.

The electromagnetic fields at the point P can be deduced from
the vector and scalar potentials by using the following
relationships,

E = VoA oo “
B o VKA v ®)
- Ved+ a,ug;ﬁ =0 (Lorentz's condition): - +ereeeeees (6)

Then, we can derive the expressions of electromagnetic fields
induced at the point P,

dB = (dB; +dB2)a,

dE = (dE? +dE®)a, + (dE” +dE)a,

where @, a, anda, are the unit vectors in 7, ¢ and z directions.

The superscript  corresponds to the term for the perfectly
conducting ground, and the superscript ¢ indicates the correction
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term due to the finite ground conductivity, leading to the
dispersive effect of the ground medium. Each term in Eqs. (7) and
(8) is given as follows (Sommerfeld,1909 ; Ichikawa and
Karasudani, 1989) ;
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dB; = o Z[ (R RE]exp(—kR)+ (R 7 xp(kR')J

............................................. ®
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So, the total fields at the observing point P can be obtained by
integrating each term over the whole height range from the ground
(z=0) to the cloud height (H) :

The above expressions of electromagnetic fields are given in
terms of complex frequency, so that we have to take the following
procedure to estimate the transient electromagnetic fields; (1)
Estimation of induced fields due to a short dipole ( u integral :
integral of the integrand including Bessel functions ( Egs.(9)~
(14) ) over the whole u range from #= 0 to u=o and (2) z integral
(integral contribution over the whole lightning channel), and (3)
inverse Laplace transform. Several numerical methods have
been proposed for the u integral as described in the Introduction,
but we have adopted the numerical method developed by Ichikawa
and Karasudani (1989). It is found that there is a peak at a
particular # value in:the integrand in Eqgs. (10), (12) and (14). The
appearance of such a peak in the integrands is apparent due to the
following factor,
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1/(k2u, + k2u,)

It is found that | R, | < | Ry, | , so that the reason for having a
peak is entirely due to u;. By using the definition of #;, this »; will
be zero for a particular u (u=x,). Next, the convergence due to u of
the integrands in Eqs. (10), (12) and (14) is mainly dependent on
the exponential factor exp (-#;). This exponential factor shows
different behaviors around u=x,. The definition of u; indicates that
u; is purely imaginary for #<x,, so that the exponential term shows
an oscillation without damping. While #; is real when #>x,, so the
exponential term indicates only damping to zero without any
oscillation. By taking into account these behaviors of the
integrands with respect to #, we divide the whole u range into
three characteristic regions. The first and second boundaries in u
are defined as the u indicating the starting point of the peak
(located at u=x,) (#=x,) and then as the ending point of the peak
(u=x;). Then, u=x; is defined as the u value where the integrand
value is nearly zero. So the first # area is from #=0 to u=x;, and
the third ¥ area is from u=x; to u=x;. The second u area including
the peak is from »=x; to u=x,. The details of determining these x;
and x; are based on the estimation of the gradient of the integrand
(Ichikawa and Karasudani (1989)). In the following computations,
each u region is divided into 10,000 equal divisions, which means
that we have sufficiently small divisions in.the second # area with
the peak in the numerical integration. We have confirmed that this
way of division in the numerical computations is sufficient to have
relative error less than 1%. ‘

Next step is to perform the inverse Laplace transform and we
have used a numerical method (fast inversion of Laplace
transform (FILT)) developed by Hosono (1981) for our inverse
Laplace transform. We assume a very realistic lightning current
waveform as follows (Master and Uman, 1984);

l(z t) :Io (efa(ﬁz/v) _eAﬂ(t—z/v))

This is called "the transmission line" model which is based on
the Bruce and Golde model (double exponential model) and which
takes into account the upward propagating speed of the current (v:
velocity). This model is recently well accepted, and we assume
the following values for the parameters;, I, =10 k4, «a=3X
10%ec™, p=1X10"sec”, and v =1.1X10% m/ s (=c/3, c: light
velocity). The initial waveform of a lightning discharge is
strongly dependent on the two parameters ( ¢ and 3 ). Nickolaenko
and Hayakawa (2002) have summariged the experimental « and
B values, but the o and B values assumed in this paper are
taken to simulate the sub-microsecond phenomena mentioned in
the Introduction (Weidman and Krider, 1980) ( the rise time
(defind as the time interval between the points of 10% and 90% of
the peak) being 0.21 us). While the conventional lightning
discharge has the rise time of a few us to a few tens of s . This
sharp rise of initial peak suggests the presence of much higher
frequency companents than usual, which are strongly influenced
by the ground dispersive effect.

We present the computational results for the horizontal electric
field, £, for different values of ground conductivity, because F, is
the quantity very sensitive to finite conductivity of the ground.
Fig.2 illustrates an example of the calculated waveforms of
horizontal electric field (E,) for a particular combination of
parameters (c=10"5/m, r=100m, and #=6.0m). The cloud height is
always assumed to be H=4000m. A dash-dot line indicates the
result on the assumption of the perfectly conducting ground, and a
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Fig. 2. An example of the calculated waveforms of horizontal
electric field(Er) for a particular combination of parameters (c =
10?2 S/m, r = 100m and h = 6.0m)
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Fig. 3. The effect of ground conductivity (o) on the Er
waveforms (r=500m and h = 6.0m)

dotted line indicates the correction term due to the finiteness of
ground conductivity. Finally, the full line indicates the total wave
field as the sum of these two terms. Fig.3 illustrates the effect of

ground conductivity on the E, waveforms, in which the ground
conductivity (o) is widely varied (¢ =1 to 103S/m). o =15/m
corresponds to the sea water, while o =103S/m, the wet
ground. This figure suggests clearly that the ground conductivity
plays an important role in the waveform distortion, as has already
been found before.

Next we want to compare our computational results with some
previous approximations. It is known that Zenneck
approximation (wave tilt approximation) is valid for the distance
more than a few kilometers (>a few kilometers) (Rachidi et al.,
1997), and is not valid for short distances. Then Cooray (1992)
and Cooray and Scuka (1998) and Rubinstein (1996) (The
Cooray-Rubinstein expression has been discussed by Wait
(1997).) have proposed their approximations for short and
intermediate distances (200m < » < 1.5km), and so this Cooray
and Rubinstein approximation is compared with our computations
in order to find out the usefulness of our computational method



and also to find out the validity limit to their approximation. The
Zenneck approximation is well known, but we have to briefly
describe the Cooray-Rubinstein approximation. Their formula on
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Fig. 4. Comparison of our computational results with previous
approximations [Our computational results are given by dotted
lines (while the full lines indicate the results on the assumption
of perfect conducting ground). Then, crosses (+) refer to the
approximation by Cooray and Rubinstein, while the Zenneck
approximation is given by circles with a dot at the center. The
propagation distance (r) is changed; (a) r = 100m, (b) r = 200m
and (c) r = 500mand o is fixed to ¢ = 102 S/m and h=6.0m)

the horizontal elec‘tn'c field over a lossy ground is given by,

Er(ry¢:hls)
:E:U(r)QO,h,S)"B;(T}@,O,S)#

Vgr+o-Ago

where the observing point P is located at (r, @, 4) as in Fig.1, and
the quantities with the superscript o are those for the perfectly
conducting ground. So that the Cooray-Rubistein approximation is
again using only the computed £,” and B,” for the perfectly
conducting ground, with taking into account the ground
parameters (& , o). Fig.4 is the result of comparison for the case
of o= 10" S/m. Our result is given in a dotted line (while the full
line refers to the assumption of perfect conducting ground). The
Zenneck approximation is indicated by a cross (+), and the
Cooray-Rubinstein approximation is given by a square with a dot
inside. In Fig.4 we assume a constant conductivity, o= 102 S/m
and /2 = 6.0m, but the propagation distance (#) is widely changed
from 7 = 100 to 500m:((a) r =100, (b) r =200m and (c) r =500m).
As is known, the Zenneck approximation is useful for long
distances (r > a few kilometers), so that the general waveforms by
this approximation are found to deviate a lot from our
computations. However, if we increase the propagation distance
(r) up to a few kilometers, we will be able to get good agreement
with the result by the Zenneck approximation. Qur main interest
is the comparison with Cooray-Rubinstein approximation.

First of all, looking at the results for three propagation distances
(r=100, 200 and 500m) in Figs.4 (a), (b) and (c), it is clear that the
agreement between ours and their approximation is rather good.
Of course, we notice small discrepancies between the two;
especially small differences in the initial part of the waveforms for
all propagation distances. However, when the conductivity
becomes lower, we can find a significant difference in the
waveforms computed by our method and by the Cooray and
Rubinstein approximation. Fig.5 is such an example, in which
the ground conductivity (o) is decreased (o= 10 S/m), and the
distance () =100m. Although the general tendency is the same
as ours in dotted line, there are a lot of differences in the initial
part of the waveform and also some visible differences in the
middle and tail parts of the waveforms.
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- Fig. 5. Comparison: between our computation and Zenneck
and Cooray-Rubinstein approximations for a lower ground
conductivity (o = 10? S/m) (r = 100m and h = 6.0m)

IEEJ Trans. FM, Vol. 124, No.1, 2004



Transient Lightning Electromagnetic Radiation Over Lossy Ground

3. Conclusion

We have proposed a new analysis algorithm for the numerical
computations of electromagnetic fields from a lightning discharge
over a lossy ground. The essential point of our computations is
the useful combined use of the fast convergent integral method for
Sommerfeld integrals and a fast inverse numerical Laplace
transform. By adopting the conventional "transmission line
model" for a lightning current waveform, we have succeeded in
estimating the transient electromagnetic fields in an exact way.We
think that our numerical method would be useful for the

computations of  propagation of transient lightning
electromagnetic fields for "any" combinations of different
parameters (propagation distance, receiver height, ground

conductivity). We have treated the lightning current with a sharp
rise-time, so that this study would be useful not only for EMC
problem, but also for the physics of lightning (especially
submicrosecond risetime lightning). Comparisons of our
numerical computations with previous approximations by
Zenneck and Cooray-Rubinstein have been performed, but we
have extensively compared with the latter approximation which
seems to be effective even for short and intermediate distances
(completely ineffective by Zenneck approximation). As the
result, the Cooray-Rubinstein approximation seems to be effective
for higher conductivity (o = 102 S/m) and in the intermediate
distance (100m < r < 1lkm). However, when the ground
conductivity becomes smaller (o < 10° S/m), we have found
significant differences in the waveform between our exact
numerical solution and their approximation. We recommend you
to use this numerical estimation for thls problem.
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