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In the development of an automatic inspection device for inspecting the quality of printed circuit boards, it
is necessary to be able to detect precisely and quickly the position of the demarcation line between two very
close components on a printed circuit board. In this study, first this problem is changed to the problem of
singularity detection in signals. Second, a new algorithm based on a fast biorthogonal spline wavelet trans-
form (FBSWT) is proposed. According to the experimental results presented, the efficiency of the proposed

algorithm is demonstrated.
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1. Introduction

An automatic inspection device inspects the quality
of printed circuit boards using image processing tech-
nology.

One of the measurement methods, which use the
three-dimensional automatic inspection device, is the
slit light projection method W, Tts measurement princi-
ple is shown in Fig.1. The laser slit light is projected to
an inspection object in the vertical direction. The CCD
camera captures an image of the laser projection line on
the object at an angle 6. The height H of the object is
calculated based on the offset d of the laser projection
line from the laser base line, by using Eq.(1).

H=dxtan@--«- -coeeememeiiiiiiiiiii.

For example, part of a QFP (quad flat package) on the
printed circuit board is shown in Fig.2. After soldering
at the position of the solder fillet as shown in Fig.2, im-
ages of the solder fillet and lead have three cases such
as Figs.3(a),(b) and (c).

When the laser slit light is projected to two very close
components (solder fillet and QFP) on a printed circuit
board, as shown in Fig.2, images captured by a CCD
camera, are obtained as shown in Figs.4~6.

In order to inspect an electronic part on the printed
circuit board, we must be able to detect precisely and
quickly the position of the demarcation line between
two very close components on printed circuit boards.
Such positions are shown by the solid lines in Fig.3 and
Figs.4~6. In this paper, these positions are called the
characteristic positions of images.

The quality of an object is judged according to the
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Fig.3. Examples of images of solder fillet and
lead, where (a): good solder, (b): little solder, (c):
no solder.

calculated height of the object at the characteristic po-
sition. '



The characteristic position is calculated on the ba-
sis of the measured center coordinates and the width of
electronic part by a conventional method. However, this
method is low accuracy and it takes more time. In this
study, we change the detection problem of the charac-
teristic position to singularity detection in signals.

The Fourier transform ) has been the main mathe-
matical tool used for analyzing singularity. The Fourier
transform is global and provides a description of the
overall regularity of signals, but it is not well adapted
for finding the location and the spatial distribution of
singularity.

Recently, wavelet theory () has provided a unified
framework for a number of techniques which were de-
veloped independently for various signal processing ap-
plications. Several singularity detection techniques (9()
have been proposed, in which derivatives of the Gaussian
function are used as wavelets. However, these techniques
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Fig. 4.  Image of good solder, where the white por-
tion of abscissa axis from 0 to 100 denotes image
corresponding to Iig.3(a).
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Fig.5. Image of little solder, where the white por-
tion of abscissa axis from 0 to 100 denotes image
corresponding to Fig.3(b).
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Fig.6. Image of no solder, where the white por-
tion of abscissa axis from 0 to 100 denotes image
corresponding to Fig.3(c).
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are not efficient in computation time because derivatives
of the Gaussian function are not orthogonal, and no fast
computational algorithm for dyadic decomposition ex-
ists.

In this study, to allow quick detection of the posi-
tion of signal singularity, a new algorithm based on the
FBSWT is proposed. On the basis of the theoretical
analysis and computer simulation, the efficiency of the
proposed algorithm is demonstrated.

2. Problem Transformation

In order to reduce the computational complexity, we
do not apply the wavelet transform to a two-dimensional
part image directly, but transform a two-dimensional
part image to a one-dimensional signal in a specific for-
mat and then apply the wavelet transform. The trans-
formation requires two steps.

The first step is to extract part images using image
segmentation, where the part image is a set of pixels
with high brightness, greater than a certain threshold.
The second step is to calculate the center of gravity of
a part image. Each center of gravity is determined by
calculating the weighted mean of pixel values of the part
image on each vertical sweeping pixel line.
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Fig.7. Signal f1(t) corresponding to Fig.4.
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A one-dimensional signal value is given by:

1
f($k> = ka ;wwk,yl X Y,

. where (z, y;) denotes the position coordinate of the part
image, k and ! denote the index numbers of the posi-
tion coordinate of the part image in each sweeping line,
Wg, v, 18 the density value of the part image at (2, %),
Wa, = 2 Wa, 4y, and 2 denotes the position coordinate

1

of the transformed signal, = = 1,2,3,4,---,90 in this
study. ‘

To simplify, we set ¢t = x in the following.

By this method, we obtain signals f;(¢t)(s = 1,2,3),
where f1(t) denotes the transformed signal from the im-
age of good solder in Fig.4, f2(t) denotes the trans-
formed signal from the image of little solder in Fig.5,
and f3(t) denotes the transformed signal from the im-
age of no solder in Fig.6. These signals are shown in
Figs.7~9, respectively.

Next, the problem for detecting the positions of the
demarcation lines in Figs.4~6 is transformed into a
problem for detecting the positions of the demarcation
points in Figs.7~9, respectively.

Because these demarcation points are singularities of
signals f;(#)(¢ = 1,2, 3) based on their physical behavior,
this is a problem of singularity detection in signals.

In this way, we can not only uniquely represent two-
dimensional part images more efficiently but also achieve
calculation simplicity.

3. A Fast Biorthogonal Wavelet Trans-
form

The wavelet transform (WT) is a powerful signal pro-
cessing technique, whose uniqueness lies in its ability
to map the frequency content of a signal as a function
of the original domain, offering the possibility of time-
frequency localization. For a detailed description of the
WT and of its properties, references are given to ded-
icated literature (®~) and only. a brief description is
provided here.

Biorthogonal wavelet systems can be built through
two-channel biorthogonal filter banks. Fig.10 shows
the block diagram of the two-channel biorthogonal fil-
ter bank. Here, h and § denote the low-pass and high-
pass filters for decomposition, respectively, and h and ¢
denote the low-pass and high-pass filters for reconstruc-
tion, respectively.

The decomposition is performed by applying two fil-
ters, h and §, to the original signal: a low-pass filter
h only retaining the approximations that are the high-
scale, low-frequency components of the original signal,
and a high-pass filter g, collecting the details that are
"the low-scale, high-frequency components of the origi-
nal signal. The procedure can be recursively applied by
applying the same two filters to the approximation vec-
tor, until the length of the resulting vector equals 1, as
shown in Fig.11.

The two-channel biorthogonal filter bank convolves an
approximation A;_q at level j — 1 with a low-pass filter
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Fig.10. Two-channel biorthogonal filter bank.
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Fig.11. Mallat’s pyramid algorithm. A; and D;

(i = 1,2,3) denote approximations and details,
respectively.

h and a high-pass filter § and subsamples by 2. The
outputs are wavelet approximation coefficient cA; and
detail coefficient cD; at level 7, as follows:

CAJ(]{I): Aj41 * iL[Qn],

eD; (k) = Aj_1 * §[2n],

where S is an input signal, and Ag = S.

For each level of decomposition, j, it is possible to
obtain a perfect reconstruction of the original signal by
inverse WT, using the approximation at level j and all
of the details from j to 1 level.

The reconstruction is performed by inserting zeros and
filtering with dual filters A and g of filters hand g ®,
as shown in Fig.10:

Aj[n] = cj4j s BT e oo (5)

Dj[n] = CDJ * g[n]’ .......................... (6)

Aj_l = Aj + Dj, ............................ (7)
where the notation djn] = { OdM n :n2; ip 1

Then the reconstruction S of the input signal S can
be obtained as S = A; + D;.

4. Analysis of Fast Biorthogonal Wavelet
Transforms of Signals

In 1992, Mallat and Hwang @ found the relation be-
tween the WT and signal singularities. When the scale
is sufficiently small, the WT modulus maxima indicate
the locations of the sharp variation points of signals and
their singular degree can often be measured from their
evolution across scales.



Although Mallat and Hwang’s work presents satis-
factory results for singularity detection in theory, the
method of choosing a wavelet and scale parameters re-
quires further study for various actual applications.

On the other hand, several computer vision re-
searchers have proved (®) that for any finite energy
signal, if the wavelet function is given by ¥,(t) =
(=1)™0™(t), where 6(t) is a Gaussian function and
n =1,2,3,- -, the wavelet transform modulus maxi-
mum (WTMM) line belongs to connected curves that
are never interrupted when the scale decreases. There-
fore, the derivative of the Gaussian function is a better
choice for singularity detection.

In reference (10), we have proposed an efficient algo-
rithm in which the wavelet is the first degree derivative
of the Gaussian function for detecting the characteristic
position. This method has solved the low-accuracy prob-
lem, however, the derivative of the Gaussian function is
not orthogonal, and no fast computational algorithm for
dyadic decomposition exists, and this method also has a.
high computational cost problem and thus may not be
suitable for real-time implementation.

Mallat and Zhong (*1) proposed a spline wavelet which
is similar to the derivative of the Gaussian function.
We have reviewed the families of biorthogonal spline
wavelets and their construction process (*2); it was found
that biorthogonal spline wavelets allow the use of Mal-
lat’s fast algorithm, have space saving coding, are com-
pactly supported, have FIR filters, and have a fixed num-
ber of vanishing moment. These properties make the
biorthogonal spline wavelets a good choice for singular-
ity detection. ,

Figs.12 ~15 display biorthogonal spline wavelets from
the first degree to the fourth degree. -

The WT coefficients indicate how closely correlated
the wavelet is with this section of the signal based on
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First degree biorthogonal spline wavelet.
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Second degree biorthogonal spline wavelet.

wavelet theory analysis (®). The larger the WT coeffi-
cients become, the greater the similarity becomes. More
precisely, if the signal energy and the wavelet energy are
equal to one, the WT coefficients may be interpreted as
correlation coeflicients.

In this study, our goal is to perform feature selection
from signals f;(t)(s = 1,2,3) by using the W'T. There-
fore, we should choose spline wavelets such that they
have better similarity with signals f;(t)( = 1,2,3) in
terms of their wave shapes.

On the other hand, the support size of the spline
wavelets increases with their degrees, as shown in Figs.12
~15. Therefore, a higher degree spline wavelet trans-

. form takes more time.
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For the above two reasons, we choose the third degree
spline wavelet to decompose fi(¢) and the first degree
spline wavelet to reconstruct fi(t), and the fourth order
spline wavelet to decompose f;(¢)(i = 2, 3) and the sec-
ond degree spline wavelet to reconstruct f;(¢)(i = 2, 3).

Filter coefficients of these biorthogonal spline wavelets
are listed in Table 1 (12),

We assume the test scales to be 27 with levels from
j =1to 7 = 5. Then, the FBSWT is executed with
signals f;(¢)(i =1,2,3).

We execute the FBSWT to signals f;(¢)(7 = 1,2,3)
with a large number of different spline wavelets. It is
found that the chosen spline wavelets are able to stress
the features of the characteristic positions of signals
fi(t)(@ = 1,2,3). The results of the FBSWT of these

Third degree spline wavelet
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Fig.14. Third degree biorthogonal spline wavelet.

Fourth degree spline wavelet
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Fig.15. Fourth degree biorthogonal spline wavelet.

Table 1.
wavelets.

h/ﬁ
1/2,1/2
1/4,1/2,1/4

Filter coefficients of biorthogonal spline

h/\V2
—1/16,1/16,1/2,1/16, —1/16
3/128,—3/64, —1/8,19/64, 45/64,
19/64,—1/8,—3/64,3/128
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signals are shown in Figs.16~18, respectively.

Clearly, Figs.16~18 show the WT modulus maxima
in the neighborhood of the characteristic position.

Since the scales are also linked to the time taken for
the WT, we consider the problem of fine scales in the
following.

The results of Figs.16~18 also show that the range
of the WT modulus maxima at the characteristic po-
sition increases when the scale increases. Furthermore,
the numbers of modulus maxima at large scale are much
fewer than those at small scale.

Therefore, considering both the precision in automatic
inspection and the speed of numerical calculation, we set
the scales to be from 2% to 2* based on the observation
method and search for the modulus maxima from large
to small scale.

level number

3
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Fig.16. Fast biorthogonal wavelet transform of
signal f1(t), where decomposition wavelet. is the
third degree spline wavelet and reconstruction
wavelet is the first degree spline wavelet.
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Fig.17. Fast biorthogonal wavelet transform of
signal f2(¢), where decomposition wavelet is the
fourth degree spline wavelet and reconstruction
wavelet is the second degree spline wavelet.
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Fig.18. Fast biorthogonal wavelet transform of
signal f3(¢), where decomposition wavelet is the
fourth degree spline wavelet and reconstruction
wavelet is the second degree spline wavelet.
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5. Singularity Detection Scheme

5.1 A New Algorithm for Automatic Inspec-
tion We have presented an analysis of the character-
istics with signals f;(¢)(z = 1,2,3) in Section 4.

Based on this analysis, a simple and efficient algorithm
is developed in this study.

Step 1: Signals f;(t)(i = 1,2, 3) are decomposed using
the FBSWT as shown in Eq.(3)~(6) at scales 27 with
levels 7 = 1,2,3,4. These WT modulus maxima (at each
level) are normalized with respect to the maximum peak
at that level. Figs.19(a),(b),(c),(d)~21(a),(b),(c),(d)
show the calculated results of signals f;(t)(i = 1,2,3)
using Eq.(4) and Eq.(6) at level j = 1,2,3,4, respec-
tively. ‘

Step 2: The events (possible singularities) are observed
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Fig.19. Obtained details of signal fi(t), where
(a): the detail at level 1, (b): the detail at level
2, (c): the detail at level 3, (d): the detail at level
4.
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Fig.20. Obtained details of signal fa2(t), where
(a): the detail at level 1, (b): the detail at level
2, (c): the detail at level 3, (d): the detail at level -
4.

3 ol
5 V)
-5
=0 =) 20 ho 60 80 100
Z;!f o -~ -——‘4\/\ e e R
i =3
TS 20 ho so 80 100
% o —I——“/\/\ —
o
Vssc (c) 20 ho 60 80 100
@ O T
]
P .5
°o (q 20 40 60 20 100
position
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(a): the detail at level 1, (b): the detail at level
2, (c): the detail at level 3, (d): the detail at level
4.



at the highest scale (24). Peaks higher than a certain

threshold are recognized as valid events.

Step 3: The search range [{o — 7,% + 7] of a singular

point £g is set up based on the valid events in Step 2.
On the basis of the calculated results in° Step 3, the

search ranges of signals f;(¢)(s = 1,2,3) are set up as

[52,66], [38,52] and [38,52], respectively, as shown in

Figs.19~21.

Step 4: These events are successively tracked at lower

scales 27(j = 1,2,3) to find their locations in the set

search ranges in Step 3.

Step 5: The abscissas t,,(m = 1,2,3,4) which cor-

respond to the WT modulus maxima at scales 27(j =

1,2,3,4) in the set search ranges of these events are

recorded.

Step 6: The position of each singularity is detected by

using Eq.(8).

4

‘toziztm .............................. .

5.2 Corﬂrif)%lter Simulation Results In this
subsection, we show the results of simulation of the
signals f;(¢)(i 1,2,3) using the proposed algo-
rithm. Detected results are shown in Table 2. On
the basis of Table 2, at the level j 4, the de-
tected positions of singularities in signals f;(t)(i =
1,2,3) are at 59 pixel, 45 pixel, and 45 pixel, respec-
tively. These are consistent with the results shown
in Figs.19(d)~21(d), respectively. At the other levels
(7 =1,2,3), also, the detected positions of singularities
in signals f;(t)(¢ = 1,2, 3) are consistent with the results
shown in Figs.19(a),(b),(c)~21(a),(b),(c), respectively.

From these detected positions of singularities in sig-
nals f;(t)(i = 1,2,3) at each'level and using Eq.(8),
we obtained that the positions of singularities in signals
[i(t)(i = 1,2,3) are at 58 pixel, 46.75 pixel, and 48.75
pixel, respectively. The errors of these detected posi-
tions compared with the standard positions are 1 pixel,
0.25 pixels, and 2.25 pixels, respectively. The maximum
detected error is 2.25 pixels.

In the development of the three-dimensional auto-
matic inspection device, if the detected error is smaller
than 5 pixels, it does not impair the quality of the device.
Therefore, the detected error of the proposed algorithm
is a permissible error. The efficiency of the proposed
algorithm is demonstrated.

6. Comparison with the Gaussian Wavelet
Based Method

In reference (10), we have proposed an efficient algo-
rithm for detecting singularity in signals using the Gaus-
sian continuous wavelet transform (GCWT). The local
WTMM line of signals f;(¢)(¢ = 1,2, 3) can be extracted
by using GCWT, as shown in Figs.22 ~24. We have de-
tected the positions of singularities in f;(¢)(¢ = 1,2, 3) at
57 pixel, 47 pixel, and 51 pixel, respectively, by finding
the abscissa where the connected WTMM line converges
at a fine scale.

A comparison of the proposed algorithm and the
Gaussian wavelet based method () (GCWT method)
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Fig.22. Extracted local WTMM line of signals

f1(t) using GCWT, where the connected WTMM
line converged to 57 at fine scale.
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Fig.23. Extracted local WTMM line of signals
f2(t) using GCWT, where the connected WTMM
line converged to 47 at fine scale.
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Fig.24. Extracted local WTMM line of signals

f3(t) using GCWT, where the connected WTMM
line converged to 51 at fine scale.
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Fig.25. Comparison of the implementing time of

the two methods, using processor x86 Family 6
Model 8 Stepping 3 Genuinelntel 702 MHz.

is performed. Table 3 shows the results obtained by the
proposed algorithm and the GCWT method. It is found
that the performance of the proposed algorithm is sim-
ilar to the GCWT method in terms of precision.
Quantitatively, we have compared the time taken for
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Table 2. Detected results of signals f;(¢)(i = 1,2, 3).
Signal | Levels | Possible positions | Detected position | Standard position | Error
fi(t) | 1to4 59|56 |58 59 58 57 1
fa(t) | 1tod |46 |47 (49| 45 46.75 47 0.25
fa(t) | 1tod |50 |51 (49| 45 48.75 51 2.25
Table 3. Comparison of the detected results of two methods for signals f;(t)(i = 1, 2, 3).
Signal | Proposed method | GCWT method | Standard position | New error | Old error
F1(t) 58 57 57 1 0
F2(t) 46.75 a7 47 0.25 0
fa(t) 48.75 51 51 2.25 0
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Fig.26. Detected position in Fig.4, where the
solid curve denotes the signal transformed by using
Eq.(2) and the plus sign denotes the characteristic
position detected by using the proposed algorithm.
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Fig.27. Detected position in Fig.5, where the
solid curve denotes the signal transformed by using
Eq.(2) and the plus sign denotes the characteristic
position detected by using the proposed algorithm.
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Fig.28. Detected position in Fig.6, where the
solid curve denotes the signal transformed by using
Eq.(2) and the plus sign denotes the characteristic
position detected by using the proposed algorithm.

the GCWT of signal f1(¢) used in reference (10) and the
FBSWT of signal f;(¢) used in this study, where the pro-
cessor used is an x86 Family 6 Model 8 Stepping 3 Gen-
uinelntel 702 MHz. The obtained results are displayed in
Fig.25, where the dotted line denotes the implementing
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Fig.29. Good electronic part (inspection result of
the electronic part in Fig.4).

Fig.30. No good electronic part (inspection result
of the electronic part in Fig.5).

Fig. 31.

No good electronic part (inspection result
of the electronic part in Fig.6).

time of the GCWT method, and the point line denotes
the implementing time of the proposed method. Clearly,
Fig.25 shows that the implementing time of the GCWT
method gradually increases to 0.471 seconds with in-
creasing ¢, and the implementing time of the proposed
method tends to retain 0.02 seconds with increasing .
Therefore, the FBSWT used in this study is significantly
more efficient.

In the proposed algorithm, we have used the FB-
SWT for decomposing signals and the scales are chosen
from 2' to 2%. Furthermore, the modulus maxima are



Table 4. Inspection results for different electronic parts.

Part images Calculated height | Interval of inspection criterion | Inspection results
Part 1{Good solder) 157 um [100, 220] G
Part 2(Little solder) 2 um [100, 220] NG

Part 3(No solder) 15 um [100, 220] NG
Part 4(No solder) 18 um [100, 220 NG
Part 5(Good solder) 157 um [100, 220 G
Part 6(Good solder) 153 um [100, 220] G
Part 7(Good solder) 165 um [100, 220] G
Part 8(Little solder) 13 um 100, 220] NG
Part 9(Little solder) 22 um 100, 220 NG
Part 10(No solder) 3 um 100, 220 NG

searched from large to small scale in the set search range
of possible singularities. Therefore, the proposed tech-
nique has the advantage in real-time processing com-
pared with the other techniques (4-(5):(10),

7. Application to Three-Dimensional Au-
tomatic Inspection Device

We have applied the proposed algorithm to more than
20 actual images obtained from the three-dimensional
automatic inspection device. It is demonstrated that
the proposed algorithm can succcessfully detect the po-
sition of the demarcation line between two very close
components on a printed circuit board. Also, we have
conducted the direct simulation of actual images in
Figs.4~6. Figs.26~28 show the obtained simulation re-
sults. In these figures, the solid curves denote the signals
transformed by using Eq.(2) and the plus signs denote
the characteristic positions detected by using the pro-
posed algorithm. On the basis of Figs.26~28, we found
that the detected characteristic positions are consistent
with the positions shown in Figs.4~6.

We have also applied the proposed algorithm to
the development of a software system for the three-
dimensional automatic inspection device. The height
of the object at the detected characteristic position is
calculated by using Eq.(1). - The quality of the object is
judged according to the calculated height. In fact, the
height of a electronic part in a printed circuit board has
a special demand. The special demand is set up as the
interval of inspection criterion in this study. If the calcu-
lated height of the electronic part is within the interval
of the inspection criterion, the quality of this electronic
part is judged to be good (G), otherwise the quality of
this electronic part is judged to be no good (NG).

Regarding the part images used in this study, the in-
terval of the inspection criterion is set up as [100,220].
Table 4 shows inspection results for different elec-
tronic parts. Parts 1~3 in Table 4 denote electronic
parts corresponding to images in Figs.4~6, respectively.
Figs.29~31 show their inspection results.

On the basis of Table 4, the calculated heights of elec-
tronic parts corresponding to images of good solder are
found to be in the interval of the inspection criterion
[100,220], and the quality of these objects therefore is
judged to be good. The calculated heights of electronic
parts corresponding to images of little solder and no sol-
‘der are outside the interval of the inspection criterion
[100,220], and the quality of these objects is judged to
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be no good. Therefore, the quality of the object is suc-
cessfully judged. :

8. Conclusion

In this paper, a new algorithm that is based on the
FBSWT has been proposed for solving an automatic
inspection problem. Some detection results have been
shown. The experimental results have shown that the
proposed algorithm can successfully specify the location
of these singularities. Also, the proposed algorithm has
been applied to the development of the software sys-
tem of the three-dimensional automatic inspection de-
vice. The quality of the object was successfully judged
according to the calculated height of the object at the de-
tected positions. We observed that the proposed method
not only gave the results which were competitive with
those of the other available techniques but also had the
advantage of real-time performance.

(Manuscript received Oct. 3, 2002,

revised March 17, 2003)
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Appéndix

Here, we present some comparisons with other means
of time-frequency analysis such as Fourier analysis and
the short-time Fourier transform (STFT).

Fourier analysis has been the main mathematical tool
used for analyzing singularities, but Fourier analysis has
a serious drawback. In transforming to the frequency do-
main, time or position information is lost. When viewing
a Fourier transform of a signal, it is impossible to tell
when or where a particular event took place. app.Fig.1
shows a plot of the Fourier coefficients of the signal fi(¢).
From this figure, we cannot obtain any information on
the singularity positions.

The STFT provides some information about both
when (where) and at what frequencies a signal event
occurs. However, we can only obtain this information
with limited precision, and that precision is determined
by the size of the window. app.Fig.2 shows the STFT
of the signal fi(¢), where the window function is a ham-
ming window of length 20 and sampling. frequency is
2000 H,. Again, we cannot obtain any information on
the singularity positions from app.Fig.2.

Wavelet analysis represents the next logical steps,
a windowing technique with variable-sized regions.
Wavelet analysis allows the use of long time intervals
in cases where we want more precise low-frequency in-
formation, and in shorter regions where we want high-
frequency information. Based on such wavelet proper-
ties and the obtained results in this study, it has been
shown that one major advantage afforded by wavelets is
the ability to perform local analysis namely to analysis
a localized area of a larger signal.
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app. Fig. 1. Fourier coefficients of signal fi1(¢).
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app. Fig.2. STFT of signal fi(t), where window
function is hamming window of length 20.
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