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Self-organizing tree (S-TREE) models solve clustering problems by imposing tree-structured constraints
on the solution. It has a self-organizing capacity and has better performance than previous tree-structured
algorithms. S-TREE carries out pruning to reduce the effect of bad leaf nodes when the tree reaches a

. predetermined maximum size (U), However, it is difficult to determine U beforehand because it is problem-
dependent. U gives the limit of tree growth and can also prevent self-organization of the tree. It may produce
an unnatural clustering. In this paper, we propose an algorithm for pruning algorithm that does not require
U. This algorithm prunes extra nodes based on a significant level of cluster validity and allows the S-TREE
to grow by a self-organization. The performance of the new algorithm was examined by experiments on
vector quantization. The results of experiments show that natural leaf nodes are formed by this algorithm

without setting the limit for the growth of the S-TREE.
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1. Introduction

Clustering techniques have been widely used in en-
gineering problems such as pattern recognition, image
processing, computer vision and recently in data mining.

- Clustering techniques enable detection of statistical reg-
‘ularities in a random sequence of input vectors and/or

patterns and division of a collection of objects into a
number of subgroups. The objects in each subgroup
show a certain degree of closeness or similarity ~®.
To determine optimal clustering, all possible partitions
must be computed. However, exhaustive enumeration of
all possible partitions is required to obtain an optimal
clustering. This task is clearly computationally impos-
sible.

To avoid this exhaustive enumeration, iterative meth-
ods have been employed. The criterion function by
which objects are moved from one cluster and to another
is optimized by an iterative method so as to improve the
value of the criterion function. There are principally
two types of iterative methods. One method is used in
situations in which the data distribution is known. A
Bayesian or maximum likelihood approach can be used
to solve the clustering problem by estimating the val-
ues of parameters of a distribution. The other method
is used in a situation in which the data distribution is
not known. In this situation, clustering can be treated
as an optimization problem by specifying a suitable cost
function to be minimized @ ®,

The computational burden required to solve an opti-
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mization problem for clustering is large. In order to re-
duce the computational burden, structural constraints
such as lattices and trees have been proposed. Tree-
structured clustering methods have become popular for
vector quantization (VQ) literatures. Our attention has
been focused on binary trees in tree-structured clus-
tering for VQ, which is a special case of clustering.
Tree-structured clustering is fast, scale well (in process-
ing time) with the number of feature dimensions and
clusters, and can capture hierarchical structures in the
data ™,

Campos and Carpenter proposed self-organizing tree
(S-TREE), a family of methods that enables hierarchical
representation of data®. S-TREE models solve clus-
tering problems by imposing tree-structured constraints
on the solution. Tree-structured clustering algorithms
adapt their weights vectors by online incremental learn-
ing. S-TREE has a self-organizing capability and has
better performance than previous tree-structured algo-
rithms. One essential algorithm of an S-TREE is prun-
ing, because an S-TREE grows in a greedy fashion.
Pruning is a mechanism for reducing the effect of bad
leaf nodes. Unnecessary nodes are pruned when the tree
reaches a predetermined maximum size (U). However,
it is difficult to determine U beforehand because it is
problem-dependent. U gives the limit of tree growth
and can also prevent self-organization of the tree. There-
fore, to realize natural growth of the tree according to
its self-organizing mechanism, a new pruning algorithm
that does not require maximum size U is needed. In
this paper, we propose an algorithm for pruning of an
S-TREE using cluster validity. This algorithm prunes
extra nodes based on a significant level of cluster valid-
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ity and allows the S-TREE to grow by a self-organizing

mechanism. The performance of the new algorithm was
examined by experiments on VQ.

The remainder of the paper is as follows. An outline
of the S-TREE and a description of the new algorithm
for pruning are given in section 2. In section 3, examples
of VQ using the proposed algorithm are given to show
the performance of the algorithm. Finally, conclusions
are given in section 4.

2. Improved S-TREE Algorithm

An S-TREE is a binary tree structure as shown in Fig.
1. There are two kinds of nodes in a binary tree: leaf
nodes and inner nodes. A leaf node has no child nodes,
and the remaining nodes are inner nodes. Each node j
has three attributes: node weight vector w;, accumu-
lated cost e; for splitting a node, and counter‘Nj (the
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Fig.1. An example of a binary tree. The nodes
drawn by thick lines indicate leaf nodes and the
other nodes are inner nodes.
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Fig.2. Block diagram of the S-TREE algorithm.
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number of times the node has been updated). The main
steps in the S-TREE algorithm are shown in Fig. 2. In
the first step of the S-TREE algorithm, the tree is ini-
tialized with a single root node. When input vector A
is inputted to the tree, the algorithm finds a leaf node j
and determines whether it should modify the tree struc-
ture by splitting that node or not. If a cost function e;
is greater than threshold E, the algorithm splits node j.
e; is computed from the square distance from A to the
winning vector w;.

After modification of tree structure by splitting, the
accumulated cost e;, the counter N;, and weight vector
w; are updated for each node j in the path connecting
the root node (j = 1) to the winning leaf (j = j) in re-
sponse to the input vector A. Update is carried out as
follows.

A€ = €, (1)
AN =1, e (2)
AW; = (A = W) /N, corereeeeeans (3)
AE =(ej — ), -wereerereenen (4)

where (1 is a constant given in advance. ¢ is the value
of the cost measure for the current input vector and is
computed as

where € is || A — w; ||? and & is a fast-moving average
of €g computed using

F is also increased to vFE, where «y is given in advance.
After splitting, two children nodes are initialized as fol-
lows: The left child weight vector is set to w; and the
right child weight vector is set to (1 + §)w;, where § is
a small positive constant. The counter N; for each child
is set to 1. The cost variable e; for each child is set
to e;/2. Since the S-TREE grows in a greedy fashion,
it has a pruning mechanism to reduce the effect of bad
splits. Pruning is performed when the number of nodes
exceeds a predetermined U.

To set convergence criteria, the S-TREE uses a win-
dow of a fixed size and computes the performance of
the algorithm over consecutive windows of the training
data. To compensate for fluctuations that can occur for
small windows, a moving average of the performance on
consecutive windows is used to check for convergence.
Taking C, to be the smoothed moving average perfor-
mance on window 7, S-TREFE’s convergence criterion is
defined by

where C; = Cr_1 + 33(C — C,_1) and C is the perfor-
mance on window 7.

As mentioned above, the SS-TREE algorithm performs
pruning when the number of nodes exceeds a predeter-
mined U. However, since U is problem-dependent, it
is difficult to determine an appropriate value of U be-
forehand. Furthermore, U gives the limit of tree growth
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and can prevent self-organization of the tree. We there-
fore propose a modified S-TREE algorithm that does
not require U. The main procedures of the algorithm
are shown in Fig. 3. In the modified algorithm, af-
ter the tree has been modified by splitting and adapting
procedures for a set of vectors in one window, pruning is
carried out using a significant level of cluster validation.
Pruning is carried out for each inner node with two leaf
children. This method was originally presented by Duda
and Hart as a method to specify the number of clusters
in the data “®. We implement the pruning algorithm of
the S-TREE according to the theory proposed by Duda
and Hart. The idea is as follows. When clustering is
performed using cluster validity J(c), it monotonically
decreases as the number of clusters ¢ increases. J(c)
decreases rapidly up to ¢ = ¢é, which is the number of
optimal clusters, as ¢ increases. Exceeding é, J(c) de-
creagses gradually and finally becomes zero at ¢ = n.
Based on this idea, a null hypothesis that is frequently
used in statistical reasoning is employed to determine é.

Suppose that there is a set A of n samples and that
there is more than one cluster for samples n. The null
hypothesis states that all n samples are from a nor-
mal population with mean i and covariance matrix 021,
where I is an identity matrix. If this hypothesis is true,
any clusters found must have been formed by chance and
any observed decrease in J(c) has no significance. J(1)
is computed as

J=3A-m]?,
A

where m is mean of the n samples. J(1) is the sum of the
difference between the cluster center and samples. Ac-
cording to the null hypothesis, the distribution for J(1)
is approximately normal with mean ndo? and variance
2ndo?. d is a dimension of A; € A. Suppose that the
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set of samples is partitioned into two subsets, A; and
A, so as to minimize J(2):

J@= > lA-m|?

i=1 AGAi

where m; is the mean of the samples in A;. According
to the null hypothesis, this partitioning is spurious.

If we know a sampling distribution of J(2), we can de-
termine the limit of J(2) to abandon the null hypothesis
for one cluster. For large n, it is approximately normal
with mean n(d — 2/7)o? and variance 2n(d — 8/7%)c*.
The limit value for J(2) can be obtained by assuming
that the suboptimal partition is nearly optimal, by using
the normal approximation for the sampling distribution,
and by estimating o2 by

1 1
52 — —_— — 2: —_—
& = E |A—m| ndJ(l).
AcA

The null hypothesis is rejected at the p-percent signifi-

cance level if
2(1 — 2d
 [20=8]x%d)
n

J(2) 2

wd

J(1)

« is determined by
1 2
=100 [ —=e Y du = 100(1 — er f(a)).
pe100 [ (1-erf(a)

In the present algorithm, after modification of the tree
by splitting and adapting nodes has been completed for
a set of vectors in one window, each inner node with two
leaf nodes is tested to determine whether it satisfies (11)
or not. If a node does not satisfy (11), then its children
represent spurious clusters and can be pruned.

3. Experiments on Vector Quantization

VQ is a special case of clustering and is mainly used for
data compression. Data compression is essential tech-
nology for communication via the Internet. It consists
of two components: an encoder and a decoder. The
encoder converts the original data into a compressed
representation that has a smaller size in bits than the
original data, the decoder uses the compressed data to
reconstruct the original data.

VQ uses a code book for encoding and decoding data.
It is carried out to create a small code book capable -
of encoding and decoding with the smallest possible be-
tween original and decoded data. The compression ratio
is determined by

size of original data in bits

r= e
size of compressed data in bits

The higher the value of r is, the better the compression

IEEJ Trans. EIS, Vol.124, No.2, 2004



S-TREE by Cluster Validity

algorithm is. The quality of the decoded data can be
measured using the peak-signal-to-noise ratio (PSNR)
in dB:

o

MSE’

where ¢“ is the variance of the original data and MSE
is the reduction mean square error.

For image compression experiments, a training set was
prepared by taking 4 x 4 blocks from four 256 x 256 gray-
scale images (Bird, Bridge, Camera, Goldhill) showing
in Fig. 4 (a)-(d). Two test sets were prepared in a sim-
ilar fashion using the 256 x 256 gray-scale lena image
(Fig. 4(e)) and peppers (Fig. 4(f)). Parameters in the
S-TREE algorithm are shown in Table 1, where 7" shows
a window size. These parameters were set according to
Campos and Carpenter ®. Training was performed by
changing of the p significance level.

Fig. 5 shows typical decoded images of the test set
of lena. Fig. 5(a), (b) and (c) are images with p = 20,
p = 40, and p = 60, respectively. PSNR, of the image
shown in Fig. 5(a) and (b) is 26.0 dB and 26.0 dB, re-
spectively. The PSNR of the image with p = 60 is 25.9
dB. The PSNRs of the other images are almost the same
as that with p = 20. Fig. 6 also shows decoded images
of the test set of peppers. Fig. 6(a), (b), and (c) are the
cases of p = 20, p = 40, and p = 60, respectively. Fur-
thermore, PSNR, of the images shown in Fig. 6(a), (b),
and (c) are 26.2 dB, 26.2 dB, and 25.9 dB, respectively.

The PSNR of the test set of lena by changing of the
percent significant levels are shown in Fig. 7. For these
computation, squared distance D,, by input vectors in
a window is computed as

Di=) > lA-w;lP

PSNR = 10l0g10

2

J A.EA]'
............................... (15)
where A; is the set of input mapped into w;.
T
D, = Z Dy oo (16)
i=1

When D, < 2.35 x 108 is satisfied, the algorithm was
considered to be converged. In Fig. 7, PSNRs by the
S-TREE algorithm are also shown. In this computa-
tion, parameters were employed as the same parame-
ters shown in Table 1. Tree growth of the S-TREE was
stopped when the number of leaf nodes was the same as
that of corresponding significant level of the proposed al-
.gorithm. As shown in Fig. 7, the PSNRs of the S-TREE
algorithm are approximately the same as the PSNRs of
the proposed algorithm. Namely, if we give the num-
ber of leaf nodes that is determined by the proposed
algorithm to the S-TREE algorithm beforehand, the S-
TREE shows the same performance as that of the pro-
posed algorithm. This means that the propose algorithm
is able to form natural clusters without setting the limit
for the growth of the S-TREE.

The curve showing PSNR change is flat except for the
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(e) ()
(a) Bird, (b) Bridge, (c) Camera, (d) Goldhill. (e) and (d) show test
sets, lena and peppers.

Fig.4. Four training images.

(b)

(c)

Fig.5. Decoded images of lena by changing of the
significant level, p.
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Fig.6. Decoded images of peppers by changing of
the significant level, p. :
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Fig.7. The dotted line shows PSNR by changing

of the significant level, p. The solid line also shows
PSNRs by the previous S-TREE algorithm.

Table 1. Parameters used in experiments.

parameter  value
Eq 50
B1 0.02
B 0.075
Bs 0.2
v 1.5
r 0.4
§ 0.0001
n 0.0115
T 1024
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part of at p = 0.0. This indicates that the PSNR is
not sensitive to change in p. Fig. 7 shows that the
change in the significant level does not affect the PSNR.
This means that the proposed algorithm can obtain de-
coded image whose PSNR is independent of p. This is
a desirable property of the proposed algorithm, because
parameter p given in advance does not affect the quality
of the decoded image.

4. Conclusions

In this paper, we have proposed a pruning algorithm
for an S-TREE using a significant level of cluster va-
lidity. Since the algorithm does not set the limit for
the growth of the S-TREE in advance, it allows natural
growth of the tree according to its self-organizing mech-
anism and it also prunes extra nodes. The results of
experiments show that natural leaf nodes are formed by
this algorithm without setting the limit for the growth
of the S-TREE. In the proposed algorithm, since we do
not need .to set U beforehand, it is useful for practical
applications. ‘

(Manuscript received March 31, 2003,

revised July 28, 2003)
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