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“Electromagnetic Interference (EMI)” has become serious problems as development of the digital technology in downsizing
in devices and performing high-speed operation. In the EMI problem such as Electro-Static Discharge (ESD), not only the
solenoidal field from currents but also the non-solenoidal field due to charges are included. For this problem, the combined
numerical analysis of both fields in the three-dimensional space and on the time domain is inevitable. I have already proposed the
condensed node Spatial Network Method for the vector and scalar potential fields based on the gauge condition. In this paper, the
fundamental field properties near the changing charges including both charging and discharge processes are presented by the

method.
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1. Introduction

“Electromagnetic Interference (EMI)” has becomes serious
problems as development of the digital technology such as
downsizing in devices and performing high-speed operation. In
this EMI problems, it is known widely that the Electro-Static
Discharge (ESD) phenomena often gives severe influences on
many kinds of electronic devices®. But, the field properties that
bring about serious influences have not been clear yet. This
difficulty is due to the mechanism of field generation of this ESD
phenomena. The discharge process are critically related to
environment parameters and temporary conditions. But, the
characteristics of ESD phenomena, especially in the near field, is
given by not only the solenoidal vector field from the discharge
current and the displacement currents but also the non-solenoidal
scalar field due to the changing charges. So far, the analyses and
experiments of ESD phenomena have been almost concerned with
the solenoidal field generated by the discharge current. For this
complicated problem including both fields, it has been known that
the combined numerical analysis by using the electromagnetic
potential variables, that are, the vector and scalar potential ones
are very effective in the three-dimensional space and on the time
domain. ‘

I have already proposed the condensed node “Spatial Network
Method (SNM)” for the vector and scalar potential fields® ©.
The network for the scalar potential is derived by using the Lorenz
gauge condition and is related to the network for the vector
potential by the equivalent current sources at every nodes.
Therefore, the total eleétromagnetic fields including both the
solenoidal and non-solenoidal components are simulated in the
vector potential network. As a results, the time variation of the
total fields due to the charging and discharge processes can be
simulated in the vector potential spatial network in the
three-dimensional space.

In this paper, it is shown that the basic field properties near the
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changing space charge pair including discharge process are
presented by the method.

2. Analysis Method

2.1  Spatial Network for the Vector Potential Field In
this method, to utilize the conventional iterative computing
procedure as same as that in the SNM method using both the
electric field and magnetic field variables in the three-dimensional
time-dependent analysis, the characteristic equations can be
defined as follows by using the magnetic vector potential “A” and
the electric vector potential “S” ®. Here, “S” is supposed to have
the opposite sign to “A™ defined by Stratton”.

VXA=GS+#O% (55 :) RTINS (1a)
VXS:—O'*A-I-é‘O% (2 D) e (1b)

2

here “c ” and “c" ” is the conductivities for the electric current
and the hypothetical magnetic current, respectively. In each node
in the spatial network shown in Fig.1, each component of both
vector potential variables is arranged to satisfy the above
equations. The nodes are classified into the two types, that is, the
electric nodes and the magnetic nodes shown as black nodes and
white ones in Fig. 1, respectively. In the former, the magnetic
vector potential corresponds to the equivalent voltage variable and
the electric vector potentials correspond to the equivalent current
variables. On the other hand, in the magnetic node, the opposite
correspondences are defined. In this network, the vector potential
wave field satisfying the following wave equation, for example, of
the magnetic vector potential “A” is simulated.
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The wave field for “S” is also simulated simultaneously.
2.2  Spatial Network for the Scalar Field In the above



equation, the right hand side term is conventionally neglected
because of supposition of the Coulomb’s gauge condition (V *
A=0) to treat only the solenoidal field due to the external current
source J,. ' But, in the case in which the scalar potential field
must be considered, this term has to be introduced by using the
Lorenz gauge condition. To simulate the scalar potential field by
the same iterative procedure as similar as that for the vector
potential field on the time-domain, I have proposed the following
characteristic equations ‘Y,

—VF = & _ts + o‘Es """"""""""""""""""""""""""""""""""" (3 a)
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;here the “F” function is defined as follows by using the Lorenz
gauge condition. :

0
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On the other hand, “Es (=—V ¢)” is the conventional electric
field for the scalar potential field, that is, the non-solenoidal
field. For the above characteristic equation, the equivalent circuit
of the node in the spatial network for the scalar potential field is
given as shown in Fig. 2, in which, the “F” function corresponds
to the equivalent voltage variable and the electric field “Es”
corresponds to the equivalent current variables as defined to
coincide the each component of the field with the current of the
same direction. Also, from the second term in the right hand side
of Equ. (3b), the charge density divided by the permittivity
corresponds to the equivalent current source at each node.
Therefore, in each node, the current continuity law is realized
between the currents of every directions and the current source. In
this spatial network for the scalar potential, the next wave
equation according to the voltage variables, that is, “F” function is
given.

@ Electric node, O: Magnetic node

—:1-Dimensional transmission line

Fig. 1.  Spatial network for the vector potential

244

OF_ OF
ot “%%¢

VF - g,u,

In the above equation, the right hand side is related to the
following current and charge continuity equation.

Therefore, this spatial network for the scalar potential field can
support the field excited by the time-dependent variation of the
spatial charge density. Also, the wave equation for the equivalent
current, that is, the electric field is simultaneously simulated in
this network

2.3 Connection of the Scalar Field to the Vector Field

In this analysis, to clarify the correspondence between each -
node in the both spatial networks for the vector and scalar
potential fields, the condensed node expression shown in Fig. 3 is
used as the spatial network for the vector potential field, in which
every field components are included in each node.® D Ag the
cube shown by dashed lines in Fig.3 corresponds to that in Fig. 2,
the gradient’ divergence term in right hand side Equ. (2) of the
vector potential can be defined in this cube and can be given as the
equivalent current term as follows by using Equ. (3a) with the
variables in the node of the corresponding cube for the spatial
network for the scalar potential field.

VV-A=—pyVF=pe, % + 14,0E,

By connecting this current source to every nodes in the spatial
network for the vector potential, the scalar field, that is, the
non-solenoidal field can be also simulated simultaneously in the
spatial network for the vector potential field, which originally
supports only the solenoidal field. In this case, the wave equation,
for example, of the magnetic vector potential is given as follows
to be excied by both the conventional external current source J,
which generates the solenoidal (rotational) field and the

Fig. 2. Equivalent circuit of a node in the spatial network for

the electric scalar potential field
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Fig. 3. Conceptual condensed node expression
above-mentioned equivalent current source Js which generates
both the solenoidal and non-solenoidal (ir-rotational) field.
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This formulation has many advantages in simulating the ESD
phenomena including simultaneously both the retarded scalar
potential field due to the induced changing charges and the
solenoidal field due to the discharge current and the electric dipole
current. .

2.4 TFormulation of the Discharge Process In the
discharge process, as the conductivity of the discharge region
changes, the wave equation becomes nonlinear and difficult to be
solved analytically. But, the iterative computation on the time
domain is effective in treating such the nonlinear process by
supposing the quasi-static condition. At the time interval for each
time step, the medium and source conditions are assumed to be
constant and these conditions are renewed by the resultant field
values to be used at the next time step. In this analysis in the
discharge process, the conductivity is changed by the
Rompe-Weizel model™® given as

oo (t) ~% G(0E,?
ot p *

Jhere, o and p are the fire constant and the air pressure,
respectively. The following difference form is used in the iterative
computation on the time domain.

o = 2+(a/ p)Euk2 o~
2—(a/p)E*

Jhere, “u” gives the direction of discharge and “k” is the time step
number as “t/At”. This conductivity is connected as a conductance
at the center node assumed as the discharge region.

3. Analyzed Results

In the following every analyses “2"!¥ the analized region of
the spatial networks for both vector potential and scalar potential
is the cube having each sides of 200Ad (Ad is the spatial
discritization) as shown in Fig. 4. The all boundary planes of the
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Fig. 4. Analyzed region and an example of source
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Fig. 5.
monopole current source with continuous solenoidal wave form;
Jy(t)= sin (2nnAt/40At)

Instantaneous vector potential distribution for conventional

region are terminated by the free space impedance to approximate
the free boundary condition. The parameters such as e o and
are normalized as to be unity for the efficient computation. To
clear the difference of the spatial distribution between the both
non-solenoidal and solenoidal fields, the observation planes are
supposed as the perpendicular y-x( z) plane for the components
such as “F”, “V- A” and “VxA” except the case for a point
change in Fig.6. Also, these every planes contain the center
point in which the source such as a point charge, a current source,
or a charge-pair is arranged, respectively. At first, the
fundamental difference between the fields caused by the
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Instantaneous scalar and vector potential distribution for a

(@
(b) “V-A” component, “V xA” component
Fig. 6.
changing point charge with continuous solenoidal wave form;

Q(t)= sin (2mnAt/40At)

conventional current source and a pont charge is considered. Fig. 5
presents the instantaneous field distributions near the
sinusoidally changing current source of y-direction located at the
center node in the spatial network for the vector potential. In the
figure, (a) shows the non-existence of the “V- A “component
and (b) shows the solenoidal field “VxA”. These field
conditions are the conventionally used for the usual current
excitation in the analyses of electomagnetic wave guides and
devices. Fig. 6 presents the “F” in (a) , “V- A “ in (b), and
“VxA” in (c) due to the changing point charge located at the
center node in the spatial network for the scalar potential field.
The field magnitude in each figure is normalized by the maximum
value in “F”. The figures (a) and (b) give the same distribution
because of the formulation based on the Lorenz gauge condition
and validate  the realization of the non-solenoidal field
corresponding to the retarded scalar potential field in the spatial
network for the vector potential. The figure (c) shows the
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(a) Gaussian form of dipole charge [C/m’]
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Fig. 7. Instantaneous scalar and vector potential
distributions for changing dipole with gaussian wave
form; Q(t)=+Exp (- ( (t-40At) /10A1)?)

“V+ A” component, “V xA” component

non-existence of the solenoidal component for this source
condition. Next, the near field around the dipole is analyzed, ‘2~
which is given as a pair of positive and negative changing charges
of y-direction with 2Ad spatial interval putting in the center node,
as the simplified model of the electrostatic induction phenomena.
The time-dependent changing of the charge quantities is assumed
as the Gaussian form. In this case, not only the non-solenoudal
field to the space charge but also the solenoidal field due to the
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Fig. 8. Total variation of “V *xA” of vector potential
from charging process with gaussian waveform;
Q(t)=tExp(-((t-40At)/10At)%) : t<40At) to Discharge
Process ( Equ.10: t>40At)

dipole current due to changing charge pair. Fig. 7 shows the
instantaneous field distribution for this case. In the figure, (a)
gives the changing waveform of the charges expressed by the
surface density and the absolute value. The figures (b) and (c)
present the same instantaneous non-solenoidal field distribution
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(a) Only considering the discharge current

(b) Considering both discharge current and displacement current
Fig. 9. Variation of solenoidal electric field for o /p=0.5

correspoding to the retarded potential wave propagation, and
figure (d) shows the solenoidal component due to the
displacement current. Then, it is confirmed that the spatial
network for the vector potential can support both non-solenoidal
and solenoidal fields. This field condition is essential in the stage
of actual charging process by friction, collision, injection, etc. in
the ESD phenomena. Fig. 8 presents the total solenoidal field
variation including both charging process and discharge processes

on the time domain. In this analysis, it is assumed that the
discharge process starts at the t=40At at which the storage charges
of Gaussian form has maximum value. Figures (a-1) and (b-1)
show the charge variations for the discharge parameters in
Equ. (9); @ /p=0.5 and « /p=0.9, respectively. In the figures (a-2)
and (b-2), the outer changing part of each field corresponds to that
excited by the displacement current before discharge process
occurs. On the other hand, the inner part of each variation



corresponds to the field excited by both the discharge and
displacement currents. So, the former part does not be related to
the discharge parameter and is almost same as that in Fig.7(c). The
each latter part appears to be severely affected by the discharge
parameters, and the magnitude in the figure (b-2) is larger
naturally than that in figure (a-2). Lastly, to show the advantage of
supporting the both non-solenoidal and solenoidal fields, the
difference in the usually observed electric field is presented in Fig. 9.
The electric field can be easily calculated as the time derivative of
the obtained magnetic vector potential. In the figure, (a) is the
field simulated by only the discharge current, and (b) is the field
simulated by this method. These results clear that the not only
the discharge current but also the displacement current have the
large influences on the near field around the discharge region. In
these analyses, the time discretization condition is almost
sufficient as each waveform of the source is'approximated by over
the 10 divisions.

4. Conclusion

It is performed that the spatial network for the vector potential
can support the non-solenoidal field by using the equivalent
current source based on the gauge condition, and this property has
many advantages in the analyses of complicated EMC problems
including both current and charge sources. In the future research,
the analysis by using the actual parameter and environment
conditions including such metal electrodes will be studied.

(Manuscript received May 2, 2003 revised Sept. 19, 2003)
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