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In an x-ray vision, identifying the pose, i.e. the position and orientation of objects from x-ray projection images is extremely
important to monitor in real time and analyze mechanical parts which are invisible from outside. It is assumed here that the x-ray
imaging conditions that include the relative coordinates of the x-ray source and the image plane are predetermined and the object
geometry is known. In this situation, an x-ray image of an object at a given pose can be estimated computationally by using a
priori known x-ray projection image model. It is based on the assumption that a pose of an object can be determined uniquely to a
given x-ray projection image. Thus, once we have the numerical model of x-ray imaging process, x-ray image of the known
object at any pose could be estimated. Then, among these estimated images, the best matched image could be searched and found.
When adequate features in the images are available instead of the image itself, the problem becomes easier and simpler. In this
work, we propose an efficient pose estimation algorithm for polyhedral objects whose image features consist of corner points and
edge lines in their projection images. Based on the corner points and lines found in the images, the best-matched pose of a
polyhedral object can be determined. To achieve this, we proposed an adequate and efficient image processing algorithm to
extract the features of objects in x-ray images. The performance of the algorithm is discussed in detail including the limitations of
the method. To evaluate the performance of the proposed method a series of simulation studies is carried out for various imaging

conditions.
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1. Introduction

In machine vision area, position and oriantation of three
dimensional (3D) objects have been rigorously applied in such
industrial problems as process monitoring and control, assembly
and PCB inspection. The techniques developed for pose
estimation rely on the features identified on the surface of object™®
and the extreme contours of the object on the image®.

In practice, there are many mechanical parts whose surface is
specular, or sometimes they are occluded by the other parts and
invisible from outside. In this case, camera vision system is not
efficient and reliable to inspect or measure them. In these
situations, x-ray system provides a good solution to overcome
these limitations due to its penetrating characteristics in industrial
field such as solder joint inspection system in PCB board and the
battery of cellular phone inspection system. Although, it can be a
good method to measure the shape or pose of objects ,until now,
x-ray method has been mainly used for the inspection but not for
the measurements in industrial field. For pose estimation of
artificial knee implants in fluoroscopy images, Hoff and Komistek
et al. @ propose a template matching technique for the 2D/2D
matching. In this technique, the library of images is created in
advance, which consists of views of the 3D models for the implant
components rendered at different rotations. This technique needs a
large size of library and may take a long matching time. Another
approach using contours for the 3D/2D matching was proposed by
Lavallee and Szeliski ® to estimate the pose of free-form objects
such as vertebra for spine surgery or skull for neurosurgery. Here,
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a free-form 3D object is modeled in advance by MRI method and
a contour in x-ray image is matched to that of the 3D model.

In this paper, we have investigated a pose estimation of objects,
with single x-ray image. For simplicity, only polyhedral objects
are considered whose image features consist of corner points and
edge lines in their projection images. Based on the corner points
and lines found in the images, the best-matched pose of a
polyhedral object is determined by a para-perspective model. To
achieve this, we propose an adequate and efficient image
processing algorithm to extract the features of objects in x-ray
images. The performance of the algorithm is discussed in detail
including the limitations of the method. To evaluate the
performance of the proposed method a series of simulation studies
are carried out and discussed.

2. X-Ray Imaging System

An x-ray imaging system for our investigation, is composed of
the x-ray tube, x-ray image device and a rotating and tilting stage
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L

Fig. 1.

An x-ray imaging system and its coordinates.
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Fig. 2. X-ray images of a pyramid with different views.

to manipulate objects as shown in Figure 1. The stage has 6 degree
of freedom with 4 translations (x,y,z, f), and tilting and rotating
motion (¢,8). In this configuration, the ratio between f and L
becomes a magnification n onto the image plane.

Figure 2 shows the x-ray images of a pyramidal shape object
obtained from different views which are achieved by manipulating
the stage on which the object lies. Here, x,y,z and x,,y,,z,
indicate the world coordinates and object coordinates respectively.

3. X-Ray Image Processing Algorithm

Since the pose estimation in this work is based on the features
such as edges and corner points in the images, it is important to
extract exact features. There are a lot of image processing
technique to extract image features in computer vision. However,
most of them are suitable for conventional camera images and not
applicable to x-ray images due to its inherent characteristics. This
comes from the different imaging principles : images in camera
vision are made by the reflected lights from the surface of an
object. On the other hand, x-ray images are made by decayed ray
through an object. In x-ray imaging method, x-ray intensity decays
exponentially as it passes through an object. The amount of decay
depends on initial intensity, penetrating length' of x-ray and
material properties such as density as represented in the following
equation :

In this equation, / and /, , respectively, are the intensity of x-ray
before and after the penetration and 4 is a decay constant of x-ray,
and x is the penetrating length®®. Thus, abrupt intensity change
in an x-ray image by itself does not directly indicate edge
information as in camera images. Also, x-ray images generally
include a severe noise due to the scattered rays within the shield
cabinet. In this section, we propose an efficient image processing
method to extract the features of x-ray image by considering these
characteristics. Since polyhedral objects are considered in this
research, we will focus on extracting edges and corner points as
image features. The procedure of extracting edges and corner
points in x-ray images is represented as a block diagram in figure
3. Here, the line edges are found from a proposed plane fit method,
then the corner points are determined using these lines, which are
explained in the following sections.
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Fig. 3. The procedure of the proposed edge detection method.
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(a) X-ray image of pyramidal shape, (b) Log filtered image,
(c) Topographic surface of (a), (d) Topographic surface of (b) 7

Fig. 4. Intensity compensation in x-ray image.

3.1 Edge Detection Algorithm As indicated in Eq(1),
intensity in an x-ray image can be thought as a function of
penetrating length of the ray when it is assumed that the object is
made of one material. Figure 4 (a) is a simulated x-ray image for a
polyhedron, a pyramidal shape object. Since the ray transmits the
longest length within the object in the peak points, the intensity
for the ray in x-ray image is the lowest with decayed x-ray. Due to
the exponentially decaying x-ray intensity as the penetrating
length, the x-ray image of the pyramid object has an intensity
distribution, which is represented by a topographic surface in
figure 4 (c). Here, we can see that the surface of the intensity plot
is distorted exponentially compared to the object surface. To
detect the edges of a polygon in an x-ray image, this distorted
intensity distribution needs to be linearized in advance. This is
achieved by a log transform with normalization. The
transformation, which is a process of converting the exponentially
decaying intensity function to a linearized one the following
equations.

L(u,v) =log[I(u,v)]

Iy = L(u,v) —min[L(u,v)]

= - x{(2" -
max|L(u,v)]— min[ L(u,v)]

where I(u,v) is the intensity of a pixel at (#,v) in the image
and 7 is the bit resolution of the image sensor. Figure 4 (d) shows
a typical topographic surface plot of the log filtered image, which
is a plot of intensities with respect to the image coordinates (u,v) .
Since the edges of the object are represented by straight lines in
this linearized topographic surface, it makes easier to- detect edges
from this surface rather than from the original one.

The edges in an x-ray image of a polyhedral object are
determined from the topographic surface of the log filtered image.
Since the topographic surface represents the x-ray penetration
distances through an object, the topographic surface of polyhedron
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Fig. 5.

Plane fit method on topographic surface.

is composed of polygonal facets. This can be easily understood by
intuition. And the edges of these polygonal facets of the
topographic surface can be regarded as edges in the x-ray image.
Based on that, we propose a plane fit method to determine the
unclear edges in an x-ray image, actually by detecting the edges of
the factes in the topographic surface. The algorithm scans whole
of the topographic surface with a small mask (3x3 or 5x5 pixel
area) as shown in Figure 5, and tries to find the best-fit palne
within the mask area. When the mask is located on one of the
planar facets, it is well fitted on the best-fit plane. On the other
hand, the fitting result is not so good when the mask include edges
where at least two planes meet together. Therefore, we can
determine the edges where the plane fit result is bad.

The plane fit within a mask window is achieved by least square
error method and based on the following plane equation with
respect to image coordinates (, V)

au+bv+c=1"

Here, a, b and ¢ are the constants of the plane and [’ is the
height, intensity value, of a point (u,v) in the image. The square
error e, of the fit result is then defined as

N-1
e,= Z([l' —au, — by, =) e
i=0
where i is the index of a pixel within the mask and I is the
intensity of the point. From the least square expansion, the
coefficients of the best fit plane for the mask are easily
determined.

This plane fit error can be used as criterion of edge detection.
Once we complete the plane fit and error evaluation over the
whole image, we can get the error map image where the picks are
located on the edges. Then we binarize the error map with the
average value, which becomes the x-ray edge image of a
polyhedral object. Since the edges obtained in this way have width
of two or three pixels, we processed it with conventional
edge-thining algorithm to reduce the data.

3.2 Corner Points Detection Algorithm The corner
points can be the important features in an x-ray image of
polyhedron objects. In this section, corner points detection
algorithm in an edge image is proposed. Once an edge image of
the given x-ray image is obtained from the proposed edge
detection method, its straight lines can be extracted through
Hough transform method. The corner points are then determined
at the points where three or more lines intersect. Figure 6 shows
an illustration of extracting corner points for a cube.

Table 1 represents the errors of corner points in case of a cube
for various values of the pose parameters, f and 6. From these
simulations, the average error of the detected corner points is
about 0.8 pixel, sub-pixel error, in a 256 by 256 image.
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(a) raw image (c) line extraction (d) corner poinis

(b) edge image

Fig. 6. Corner points detection procedure.

Table 1. The error of corner points detected for of a cube.

(%) mm) 35 40 45 50 60 average
15 0.75 076 0.75 077 0.90 078
16 0.96 084 074 071 0.93 084
17 0.55 0.67 0.75 084 0.83 074
18 0.76 095 0.67 0.80 1.07 0.85
19 0.93 0:79 0.71 077 112 0.86
20 0.67 058 079 071 0.72 0.70
21 071 072 0.82 071 0.84 0.76
22 0.89 0.67 058 0.86 0.79 0.76
23 0.86 0.96 0.58 0.87 0.75 0.80
24 074 0.77 073 0.70 0.82 075
25 0.77 0.95 0.89 0.49 0.66 075

average 0.78 079 073 0.75 0.86 0.78

4. Pose Estimation

In this section, we will present a method of estimating pose of
polyhedral object from an x-ray image using the image feature
information, which are the corner points and edge lines. It has
been known that the pose of a three dimensional object is not
determined uniquely by an analytical solution from just one image.
Rather, the best matched pose for the given image can be solved
iteratively based on the perspective imaging model.

4.1 Perspective Projection Model Figure 7 illustrates a
perspective projection model of an x-ray imaging system. In this
work, a normalized virtual plane of which the distance from x-ray
source is unit length, is considered as an imaging plane as shown
in the figure.

The objective is here to determine the relationships between the
object coordinates and x-ray source coordinates, which is
expressed by a homogeneous coordinate transformation as :

X X,

Yo | _|R T| ¥,
LT T T e ()
z, 0 1]z
1 1
where R eR* and TeR* are the rotation and translation

matrices, respectively. ‘

In this configuration, a point P, and a'line /, on the object
coordinates are projected onto a point () and a line 7,
respectively in the normalized image plane. The point (), in the
imaging coordinates (u,V) is given by ‘

u _\;'FH'E _7-}";+uo
" kP4t g+l
- L e (7)
YRR AL a?
" k-P+t, &+l
j:;/l‘,, j:}‘/tz’ 81276-1_):/1‘2 ................................... (8)
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Fig. 7. The perspective projection model.
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Fig. 8. Para-perspective projection.

P, 7,7k are the
unit vectors of x,y,z axes, respectively for the object coordinates
and (u,, v,) = (2, /2,,8,/1,) . ‘

And a line [, on the object coordinates, is also imaged as a line

where P is a position vector of a point

L, invirtual plane,
It P=W, + AV, AR o ©

where 7, eR* is a directional vector of the line I, and
W, eR> isapoint on the line

L aj(j.17j+u0)+bj(j-17j+v0)+c](l+gx):0 .

4.2 Para-Perspective Projection Model Pose estimation

is performed by using a para-perspective iterative method that was

introduced by Dornaika and Garcia ®. Para-perspective

approximation is explained in 2D space for convenience
illustrated in Figure 8.

‘ Here, it is approximated that an object point P; is imaged at a
point (' rather than its real projection point (, on the
‘hormalized image plane. As shown in the figure, the projection
follows a parallel ray approximation, where all the points on the
object coordinates lie in the approximated plane via rays parallel
to the ray passing through the origin of the object coordinates.
This para-perspective model is mathematically achieved by a
first-order approximation of 1/(1+&,) in the perspective model:

1
——n~l-g ,ic{l.n}.
By applying this approximation to equations (7), we obtain a
para-perspective approximated projection Q7F (u/,v?

i>"
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w =(I-F+u)(1-e)~I Bru-ue, an
v :(j-ﬁ:+v0)(]—gi)z.7-ﬁi+vo — Vb, -
Then, the relation between the para-perspective (x?,y”) and
the perspective projection (x,y) of P in the normalized plane
is written by : ‘
w'=uQ+e)-ue

vl =v(l+g)-ve .

The para-perspective equation (12) is rewritten if we inclnde the
parameters of the object pose :

ulp_uo:l~u0k23:
7
- z L L PP PP PSR PPPPRTPRT (13)
vf—vO:J7v°kf’;.
1

By substituting equations (7) and (11) in equations (13), we
obtain

u,—u)(1+&)=P-1I,
( ° T (14)
Oi=v)A+g)=F-J,
where fp:ﬂ and szj_vok
tl tZ
In this manner, a line on the normalized plane 7, in
equation(9) can also be rewritten as
aW, -1, +bJW, T, +(au, +bv,+c)1+7,)=0
ajl7]jp+bJI71-jp+(aJu0+b],v0+c])§]‘:O
........ ‘(15)

where U,:g’W,/tﬂ fj:E-Z/tz.

Therefore, two constraint equations to determine the pose
transformation vectors 1. p,j , are provided by equation (14) on
each point feature, and another two constraint equations can be
prepared in equation (15) from a line feature in an image if it is
available. In the case of a polyhedral object, a number of corner
points and lines are available as the features in determining the
vectors 7 p,j » - When 7 corner points and m lines are detected in
the image; 2(n+m) equations are available and is written as a
matrix form :

I,

I
where the matrices G and C are expressed as equation (17)
using the image features :

Pel Cc - GERz(mn)xs C e Rm+m
2> 3

T T
B 0 (u, —up)(1+ &)
T T
0 A M —v)+g)
P (u,, —u )1+ &,)
6 B eewaie)
aw!l bW —(ayutg + by, + )1+ 1)
aVi by’ —(ay + by, + ))&
aanT an;T _(anu() + bnvo + Cy )(1 + T]n)
_a"I/"T an;T ] _(anuo + bnv(! + Cn)fn
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Finally, the pose of an object is estimated by solving the
equation (16) and determining the transformation vector ¥3 p,j » TI.
The estimation is performed iteratively, since the equation (16)
comes from a simplified para-perspective model and the equation
itself includes estimation error. ‘

The procedure of the iteration is summarized as :

Step 1. Para-perspective estimation :

Initialize para-perspective parameters

£=0,7=0,§=0 ;i=12,. .nand j=L2,. .m.
Step 2. Calculate [I, J,T =(GG)'G"C.

Step 3. Calculate pose parameters R,T using [/ P,j I

T=[t,1,1]

; tZ:l(—“lj_ug+——“1jv§), t.=ug, and 7, =vyf,
2 ul -
R=[/ ] kI
s k=01, xJ, 1, ], xk —u,J, xk)
i=t] tuk , j=tJ,+vk.

Step 4. Update the para-perspective parameters

kP kW, k7,
ST T ) {

z z z

Step 5. Go to step 2 and continue the procedure until there is no
meaningful change in the para-perspective parameters.

5. Simulation Results

A series of simulations was performed for three different
sample objects, a cube, a pyramid and an octahedral object of
which x-ray images are shown in Figure 9. .

Table 2 represents the simulation results for these three objects,
where the line features are mainly used in the estimation and
corner points are partially used. The simulations are conducted on
55 different poses for each object, and the averaged errors of the
results are listed in the table. From the results, it can be pointed
out that as the number of features increases in the estimation, the
estimation. error is decreased. In most cases, the estimation is
finished within 3 iterations. However, there is an important fact
that the number of iteration for convergence is related to the
distance between an object and =x-ray source due to the
para-perspective approximation error. Since the para-perspective
model is a parallel ray approximation, thus has a large

(a) cube (b) pyramid (c) octahedron

Fig. 9. The simulation images of polyhedral objects.
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approximation error when an object is located close to the x-ray
source. Figure 10 shows the trend on how the number of iterations
is reduced according to the distance between an object and x-ray
source. For convenience, the distance is normalized with the
representative size of an object. As shown in this figure, the
iteration number for a successful estimation is reduced from 19 to
3 as the normalized distance varies from 0.8 to 2. When the
normalized distance is less than 0.8 no convergence has been
achieved. .

Table 2. The error of pose estimation.

(a) result of a cube

paraperspective iteration
No. of Rot. Error | Trans. Error{ No. of
correspondences (deg.) (%) iterations
12 lines + 1 point 0.33 0.45 2
12 lines + 2 points 0.31 0.32 2
12 lines + 3 points 0.31 0.28 3
12 lines + 4 points 0.28 0.25 2
12 lines + 5 points 0.25 0.20 2
12 lines + 6 points 0.23 0.20 2
12 lines + 7 points 0.21 0.20 2
12 lines + 8 points| 0,21 0.19° 2
average 0.27 0.26 2
(b) result of a pyramid
paraperspective iteration
No. of [ Rot. Error{ Trans. Error | No. of
correspondences (deg.) (%) iterations
8 lines + 1 point 0.48 0.29 3
8 lines + 2 points 0.52 0.45 2
8 lines + 3 points 0.53 0.38 2
8 lines + 4 points 0.51 0.28 2
8 lines + 5 points 0.43 0.26 2
average 0.50 0.33 2
(c) result of an octahedral object
paraperspective iteration
No. of Rot. Error | Trans. Error] No. of
correspondences (deg.) (%) iterations
12 lines + 1 point 0.54 0.49 2
12 lines + 2 points 0.52 0.50 2
12 lines + 3 points 0.51 0.41 2
12 lines + 4 points 0.48 0.41 2
12 lines + 5 points 0.44 0.43 2
12 lines + 6 points 0.43 0.40 2
average 0.49 0.44 2
25 ¢ - -
E 20 \
[
2L 15
s \
g 10
e
g \\0\‘
Z2 5 ——y
0 L 1 i
Y] 0.5 1 1.5 2 2.5

Distance to X-ray/object size

Fig. 10. Iteration numbers v.s. normalized distance.



6. Conclusions

In this paper, an estimation of the pose of a polyhedral object
using an x-ray image has been studied. The method is based on the
image features of a polyhedral object such as corner points and
line edges. To detect features efficiently in x-ray images we
proposed a series of image processing methods, which includes an
edge detection algorithm named as a plane fit method. From the
simulations, the corner points are detected successfully with the
averaged error about 0.8 pixel.

From the features of lines and corner points detected in x-ray
image, the object pose was estimated iteratively using a
para-perspective approximation method. The estimations are
performed on images of various poses. The error is found to be
less than 0.5(degree) and 0.44(%) in rotation and translation,
respectively. The iteration for the successful estimation was
related to the distance between an object and x-ray source due to
the para-perspective approximation error. Once the normalized
distance is beyond 0.8, in our simulations, the iterative estimation
converged successfully with sufficiently small errors. In this
research, only polyhedral objects were considered for the
convenience of defining image features. However, it needs to be
expanded to arbitrary shapes including curved surfaces such as a
cylinder, a cone and so on. ‘

(Manuscript received Jur. 28, 2003, rivised Nov. 7, 2003)
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