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Dynamic Color Tracking Based on Probabilistic Data Association
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This paper presents a color tracking method based on probabilistic data association in order to resolve
difficult and complicated visual tracking problem, such as a changing of target’s representation, a clutter of
environments and an interaction of target and camera. Because the probabilistic data association is flex-
ible and suitable for ambiguous and missing data, which generates the difficulties of visual tracking, some

methods of probabilistic data association could be combined and applied in this tracking method to find

the solutions of these difficulties. Due to using sequential Monte Carlo framework, this tracking method is
applied to tracking of changeful target by handling the related information between every frame in image
sequences. In order to improve tracking accuracy, this method utilizes factorized sampling algorithm to
express target characters as sample-set. Moreover, this method benefits from HSV color model and captures
the color natures of object like human to enhance the color-sensing capability of computer. Hence, this
method could be considered as self-learning system and imitate the based human vision function — trackmg
The tracking system applying this method is implemented in real-time at around 15Hz with 640 x 480 pixels
image. The results show that the self-learning and real-time system is able to track a target robustly with
enough accuracy and automatlcally control the camera’s pan, tilt and zoom to remain the object centered in

the field of vision.
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1. Introduction

Visual tracking could be treated as target state repre-
sentation and target state inference problem in an im-
age sequences. Moreover,in cluttered and dynamic en-
vironments the better probabilities of accurate tracking
depend on richer representation and more robust infer-
ence. The target state representation could be consid-
ered as color segmentation, contour detection and po-
sition mark. And the target state inference could be
treated as an evaluation from old states to new one in
fuzzy logic at every step of an image sequence. Hence,
visual trackingis based on pattern recognition and prob-
ability theory. Real-time tracking in reality is difficult
because there are much interference in environments and
changes of target. Sometimes visual tracking even can-
not be implemented due to that the successive inference
of target states are interrupted and the unique repre-
sentation of target doesn’t exist. For example, when
two very similar objects (the one is target, the other is
interference) disappear and emerge simultaneously, the
visual tracking could not continue. In fact human can
not distinguish the target in this situation. This situ-
ation doesn’t conform to the basic criteria of tracking.
That is the present state of target must be predictable
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by previous one or matchable with template. Usually
two factors (i.e., continuity and uniqueness) determine
the success of prediction and matching. The continuity
means the changes of target state must be continuous
(little by little, step by step) and can be recognized by
tracking system or human. The uniqueness means the
matching result using template must be unique and can
be represented in view. In this assumed situation that
two very similar objects exist and one of them will be
tracked, the continuity denotes that the two objects can
move freely and at least one of them must be in the view.
The uniqueness denotes that the two targets must have
differences between each other, like color, shape, motion
and so on. The conclusion is that when one of the two
factors (continuity and uniqueness) exits, the accurate
tracking can be remained for long time.

In visual tracking process, target representation and
inference are two of the most important elements. Tar-
get representation consists of color distribution, shape
distribution etc.. Many tracking algorithms assume
fixed color distribution @~® for the target to enable
efficient color segmentation. But in practice they
are often invalid. therefore some methods®~® are
used to replace assuming fixed color representation, in
which a Gaussian is applied to represent both color
and motion parameters. In shape representation, be-
sides the Sobel method ”, a snake method as the pro-
jection of a continuous contour lying on a smooth
surface onto the image has been presented by refer-
ences ®® . In order to provide a more constrained
representation of target, the approaches® ® 03 gp
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ply both shape and color distributions of target. In
inference aspect, some methods ®® build target tem-
plates to predict and match the representation in ad-
vance. The Kalman filtering " has given a classical
hypothesis generating under Gaussian assumption. Be-
cause in clutter which causes the target to be multi-
model and non-Gaussian, CONDENSATION *? (factorized
sampling)and ICONDENSATION *® (important factorized
sampling) have been presented.

In this paper we present a new color tracking based
on probabilistic data association. It is based on tracking
criteria to build a sample-set representation and multi-
inference model and applied to gradual changing tar-
gets. In cluttered and complicated environments, this
approach expresses enough efficiency and accuracy.

Section 2. describes the sequential Monte Carlo
framework specially used in field of tracking. A fac-
torized sampling algorithm is presented in Section 3. In
Section 4. and 5. we use the dynamical model and
the HSV color model to enhance the tracking accuracy.
There is tracking procedure in details in Section 6. and

the experiments results are shown in Section 7.

2. Sequential Monte Carlo Framework

Tracking model could be taken as a graphic model that
is a marriage between probability theory and graph the-
ory. Usually the dynamic tracking model is assumed to
be a sequential Monte Carlo framework. The sequen-
tial Monte Carlo framework must be set out in terms of
discrete time slice t. The state of target at time slice ¢
is x; and its history is X; = {x1,...,x¢}. Similarly the
state of observation at time slice ¢ is z; and its history is
Z; = {z1, ...,z }. In this tracking model the new target
state x; depends on the previous proceeding state x;—1
and independent of the earlier ones in Fig.1. So we can
get

p(xt|Xt_1) — p(xt‘xt_]') ............. R (1)
That is expressed the dynamic tracking model frame-
work. Also the new observation is independent of pre-

vious states X;_; and previous observations Z;_;. So
that

(2| Xy, Zp—1) = P(Zg|Xg) oo (2)

The prior p(x:|Z:—1) is actually a prediction taken
from the posterior p(x;—1|Z:—1) at the previous time
t — 1. So that

p(xt|Zt) = Op(Zt|Xt)p(Xt|Zt_1) .............. (3)

p(xt|Zs-1) /xt 1 p(Xe|xs—1)p(%e-1|Zy—1) - (4)
()
oy

Fig.1. A sequential Monte Carlo framework rep-
resents dynamic tracking.
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and C is constant independent of x;. They are repre-
sented the propagations of state density at time ¢, where
p(z¢|x:) denotes the measurement probability. Figure 1
shows the graphic model of tracking.

3. Factorized Sampling Algorithm

To improve tracking accuracy, the factorized sampling
algorithm ®* is designed to address more general situa-
tions of target in sequential Monte Carlo framework. It
has the noticeable feature that it is a considerably sim-
pler algorithm than the Kalman filter. Despite random
sampling is often considered to be computatlonally in-
efficient, the factorized sampling algorithm could run in
near real-time by control of samples quantity. The rea-
son of robustness is that tracking over time can maintain
relatively robust distributions at successive time-steps,
and self-learning model of color or shape is built at the
same time.

By Bayesian rule, the posterior density p(x|z) could
be represented as

p(z[x)p(x)

p(x|z) = ) U (5)

where C is 1/p(z) independent of x. By the factorized
sampling algorithm a random variant s could be created
from p(x) to approximates the posterior p(x|z). Then
the set of samples {s(™ 7™} could be generated from
p(x) with index n € {1, ..., N}, where

Cp(z[x)p(x) =

(n)
(n) _ pz(s'™) _
7\ = —F——=—— where p.(x) = p(z|x) -- (6)
Zivzl p2(s™)
and the mean posteriors p(x|z) can be generated from
the set of samples {s(™,w(™}. The more samples are
selected, the more accurate result could be obtained.

SN sMp,(s™)
Yony P2 (™)
In CONDENSATION algorithm, the set of samples at

time ¢ denoted {s{™, (™ n=1,..N} are drawn from

prediction prior p(x¢|Z;—1). So the prior could be re-

placed by the dynamical model p(x¢|x;—1) and the set

of samples {st 1,7r§n)1,n:1,...N} at time t — 1 of
p(x—1]Z—1).

However, in fact the set of samples are difficult to be
obtained from the prediction prior p(x¢|Z:_1). So an
important function g(x) is generated and applied to se-
lect the samples. g(x) means that which areas of state
contain most posterior information. Generally there are
some samples existing in these areas and the mean value
of all the samples could very approximate the target.
The method named importance sampling improves the
efficiency of factorized sampling. The sample weight
could be written as

m _ Fu(si”)

Ty —
t(S( ))

p(x|z) ~ p(x|z) =

p(ze] % = sg”)) ............... (8)

(n) Zﬁ(;') p(x; = s( )|Xt L= S(J) D - (9)



In IcCONDENSATION algorithm, some samples generated
from standard factorized sampling f(x) and some from
important factorized sampling g(x). We consider f(x)
to be equal with g(x) in order to gain the fastest com-
putation velocity in our approach.

The Fig.2 shows one time-step of factorized sampling
algorithm. In the figure one blob signifies one sample
s(® with its weight 7(™. The algorithm includes three
steps. The first step is stripping, which denotes dividing
séﬁ)l from ﬂt(.f)l and obtaining sample set {sgf)l} with-
out its weights {x(™,} in old state x,_; for time-step
t — 1. The second step is drift/diffusion. Drift and dif-
fusion separately express deterministic component and
stochastic component in propagation p(xs|x;—y) from
old state x;.1 to new state x;. And the last step is
measurement, which means generating weights {ﬁt(n)}
from. the observation density p(z:|x;) to obtain the new

sample-set {sé") ,wﬁ") } of new state x; for time-step -

t. Section 4 and Section 5 define the models about
p(xy|xs—1) and p(z|x;). The complete procedure will
be summarized in Section 6.

4

Xt-1 state

&

i
e o e 2 driff/diffusior
/ ° * St(n) bt

. p——
Xt state T T
3. measurement

Fig.2. One time-step in our factorized sampling
algorithm.

4. Dynamical Model

The shape of tracking region is fixed by the defini-
tion of window W. It could be a rectangle or an el-
lipse in @ ®_ Our approach doesn’t restrict the type of
shapes. We can use more complicated hand-drawn.or
learned regions in cases. In any case, tracking could
amount to estimating the parameters of the transform
in each frame to be used in W. In shape transform
consideration, if the tracking region has enough char-
acteristics of color information, the choice of a simple
shape seems appropriate. Thus we consider the location
d = (dz,dy) in the image coordinate system and the
scale e = (ex, ey) as the estimative hidden variables as
in®®.

The second-order auto-regressive process (ARP) 4 is
selected to calculate these parameters. Consistent with
the first-order formalism described in the previous sec-
tion, we define the state at time t as s; = (d;,e;) =
(dzy, dyt, ex, eyr).Then dynamical model is assumed as

Sir1 = Psg + Qs +Uvy + T, vy ~ N(0,%).

where v, are independent vectors of independent stan-
dard normal variables. They could be considered as
Gaussian noises drawn from A(0,X), P and Q are ma-
trices representing the deterministic components of the
dynamical model respectively. U is metric represent-
ing stochastic component of the dynamic model. T is a
fixed offset. They could be learned from a set of repre-
sentative sequence where previous tracking results that
have been obtained in some way. The specification of
ARP in detail is described in appendix. We utilize a
special model composed of the four relative dynamical
matrices on dxy,dy:, ex; and ey;, and their respective
standard deviations are 5 pixel/frame, 5 pixel/frame,
0.1 frame~ /2 and 0.1 frame~1/2.

5. HSV Color Model

Hue  The color type (such as red, blue, or yel-
low). Measured in values of 0-360 by the central
tendency of its wavelength

Saturation The ’intensity’ of the color {or how
much greyness is present). Measured in values
of 0-100% by the amplitude of the wavelength

Value  The brightness of the color. Measured
in values of 0-100% by the spread of the wave-
length

The Hue Saturation Value (or HSV) model defines a
color space in terms of three constituent components;
hue, saturation, and value. HSV is used in color pro-

gressions and is a non-linear transformation of the RGB

color space.

Artists sometimes prefer to use the HSV color model
over alternative models such as RGB and CMY, be-
cause of its similarities to the way humans tend to per-
ceive color. RGB and CMY are additive and subtractive
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reference region
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propagated
sample-set
®
Fig.3. A image conversion from RGB color space
to HSV color space. the above image is in RGB
color space, the following image is in HSV color
space.
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Fig.4. The color histogram hy(s;) in time-step ¢.

Fig.5. Tracking multiple regions in frames.
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models, respectively, defining color in terms of the wave-
lengths of light, whereas HSV encapsulates information
about a color in terms that are more familiar to humans:
What color is it, how intense is it and how light or dark
is it? In this paper, the HSV model is used to obtain
more chromatic information from shading effects. If the
hue and the saturation are too small, color information
of object cannot be distinguished from background. In
natural environment, for a tracking object, its chromatic
information is so more constant than its luminous in-
formation that we can regard chromatic information as
foundation of visual tracking. Hence, the HS histogram
is created with N, N, bins and the pixels’ hue and sat-
uration are larger than the hue threshold and the satu-
ration threshold set to 0.2 and 0.2. Whereas, the pixels,
which have less color and approach white or black, retain
important information when experiment environment is
dark. Thus it is useful to create IV, additional value bins
with them. The histogram consists of N = N, N, + N,
bins. In our experiments, we set Nj,, N, and N, to 10
by default. An image conversion from RGB color space
to HSV color space is shown in Fig.3. It is apparent that
the chromatic information is strengthened and the lumi-
nous information is weakened from RGB color space to
HSV color space.

Within Fig.4, given the state vector s, = (d¢,e;) =
(dxs, dyy, exs, ey;) in time-step t, the state region in

which color information will be gathered is defined as-

R(s¢) = dy+e,W (W is default scale of region). And the
pixel location is defined as ry = (rz;, 7y;) in state region
R(s;). We assume nu(ry) € {1,..., N} as the bin index
at pixel location ry in time-step . Within this region a
kernel density estimate hy(s;) = {hsn(s¢),n = 1..N} of
the color distribution is given by ®

)=0 > Sln(rs) — nly(rs — di))

ry€R(s;)

h’t,n (St

where ¢ is the Kronecker delta functlon C is a nor-
malization constant ensuring Z ht,n(st) =1, vis
a weighting function, and location r; lies on the pixel
grid, possibly sub-sampled for efficiency reasons. This
model associates a probability to each of the N color
bins. In ®® the weight function is smooth kernel such
that the gradient computations required by the itera-
tive optimization process can be performed. This is not
required by our approach, hence we set v = 1, which
amounts to standard bin counting.

The color histogram hy(s;) in time-step ¢ associated
with a hypothesized state s; will be compared to the
reference color histogram h* = {h* n = 1..N},with
Zn 1 hy, = 1. In our experiments, the reference distri-
bution is gathered at an initial time at a location/scale
sy,, which is either manually selected, as in ® @ or au-
tomatically provided by a detection module. In either
case:

h* = htO (S;[))
The data probability must favor candidate color his-
togram close to the reference histogram, we therefore
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need to choose a distance on the HSV color distribu-
tions. Such a distance D is used in the deterministic
techniques as @ ¢ the criterion to be minimized at each
time step. In®, D is derived from the Bhattacharyya
similarity coeflicient, and defined as

Dlh* hy(s;)] = [1—2«/!1*}% st}

with the argument that, contrary to Kullback-Leibler di-
vergence, this distance between probability distribution
is a proper one, is bound within [0,1], and empty bins
are not a source of concern.

When gathering statistics on a number of window
sequences obtained from successful tracking behaviors,
we observed a consistent exponential behavior for the
squared distance D?. when letting p(z|x; = s¢)

p(D?[h*, hy(s;)]), we thus set:

P(Ze)xp = 8¢) o eXp{—)\Dz[h*, h:(s:)]}

In the experiments reported in the paper, it is difficult
to estimate satisfactorily the parameter A, so we fixed
it to the same value A = 20 by default. This value is in
good agreement with the range of values estimated on
the labelled sequences mentioned above.

6. Algorithms Summary

From above-mentioned theories our tracking method
could be built and used to track target in clutter when
the target and tracking camera are moving at the same
time. In our experiment the algorithm of tracking ap-
proach includes two parts—initialization and iteration.
They are summarized in the following table.

1 Initialization
(1) generate initial sample s, and
computer its reference histogram

h* = {h*(n),n=1..N}
(2) generate the first sample-set
{sgn) =s;,m=1,.M}

2 Iteration

(1) propagate each sample from the cur-

rent set {sgm),mzl,...M} to generate

a new set {§§T{,m =1,..M} by second-
order ARP
compute candidate histograms
{ht+1(§§:'_?),m = 1M}
(3) compute each sample’s probability
{7"t+1 = Cexp{-\D?[h*, by (8550)1)
=1...M} and C is a constant which let
S, 7l
generate index function
{k =1i(m),k =1..M,m = 1..M}(i(m) is
a function that arrange the new samples
in descending order by their new probabil-
ities)
(5) built new sample-set

(s = sl k= 1. Mm = 1..M}

then goto step (1)

(2)

(4)

IEEJ Trans. EIS, Vol.124, No.3, 2004
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Fig. 6.

7. Experiments

In experiment we draw a reference region as an initial
sample 87, in the initial frame by computer mouse. And
our tracking system automatically generates M same-
size fixed-shape regions which are included in green win-
dows and whose color information best matches the color
reference region. In our experiment, M is set to 10 by
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Human head tracking in cluttered room.

default. As above algorithm, every region is considered
as one sample sff”) in sample-set { sgm), m=1,..M} for
time-step ¢, and every region’s distance with reference
region in HSV color histogram is assumed in inverse
proportion to every region’s weight ng) (probability).
Starting from the last position in the previous frame, the
new position of every region is calculated in the current

frame by second-order ARP. And its weight is calculated



@

from its new distance with reference region in HSV color
histogram. Moreover, the regions are arranged in de-
scending order of their weights at the same time. The
process is iterative at each frame to maintain the most
suitable sample-set and use the arithmetical weighty av-
erage function to obtain the best region’s position. Fig.5
has five example-images captured from experiment video
at intervals of 10 frames.

Our tracking system is based on software. We have
developed this tracking system on a 1-processor Intel
Pentuim4 1.8GHz PC at around 15Hz with 640 x 480
pixels image sequences. The tracking results based on
data association are robust.

Fig.6 is an image sequence of experiment whose some
images have been mentioned in Fig.5 to explain our
tracking algorithm. We use a camcorder to capture the
person at the center of our office. A person is walking
and turning round freely from one side of the office to

another side. His head that is the tracking target is very

similar with the boxes and instruments on shelf, cabinet
and desk. The boxes’ color is close to the skin and the
dim instruments’ color is close to the hair. The results
show that the tracking system is able to find the head
position in the image sequences and control the cam-
era pan/tilt to adjust the head centered in the field of
view, no matter when the head rotates or partially dis-
appears and interferences are closed to it or partially
cover it. So the system using dynamic color tracking

©
Fig.7. Chimney tracking in bumpy road.

method proposed in this paper is suitable for cluttered -

environments.

In Fig.7, we install tracking system in a car and set the
camera towards window. A white chimney of factory is
the tracking target. No matter how many the obstacles
appear and no matter how violently the car shakes, the
tracking target — chimney is adjusted in the center of
image. All of the processes have run in real time.

Fig.8 illustrates the results of the human head track-
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Fig.8. The accuracies of the human head tracking
and the chimney tracking based on dynamic color
tracking method.

ing and the chimney tracking based on dynamic color
tracking method proposed in this paper. The frame ac-
curacies of each sequence are estimated at intervals of 10
frames. The average accuracy for human head tracking
frames is about 87.7% with deviation 6.1%. And the
average accuracy for chimney tracking frames is about
92.1% with deviation 2.3%. The human head are more
changeful than chimney in color space when they are
moving and rotating. Therefore the results of the chim-
ney tracking are more accurate than the human head
tracking in these experiments.

8. Conclusion

This paper has presented a dynamic color tracking
method based on probabilistic data association. This
method can be applied to changeful target tracking in

IEEJ Trans. EIS, Vol.124, No.3, 2004
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cluttered and dynamic environments. The factorized
sampling theory is used in our system to choose the set
of samples and let their mean distributions very approx-
imate the target’s ones. Because the method considers
the relationship of target’s representations and states
between different time-steps by using sequential Monte
Carlo framework, the proposed method is robust and
efficient in real time with big image size.

The efficient tracking of visual features in complex en-
vironments is challenging task for the vision community.
Real-time application such as surveillance and monitor-
ing, perceptual user interfaces, smart rooms and video
compression all require the abilities to track moving ob-
ject. So we need to apply probabilistic data association
methods to more extensive image processing fields.

(Manuscript received July 3, 2003,

revised Nov. 10, 2003)
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Appendix

A second order auto-regressive process model{ARP)®*
has been described by formula(10). Given a training set
{x1,...,xp} from an image sequence, learn the parame-
ters P, @, U and T for a second-order ARP that describes
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the dynamics of tracking.

(1) First sums R;,i = 0,1,2 and auto-correlation
coefficients R;; and Rzy’ 7 0,1,2 are com-

puted:
R; = Ziwzs K—i
M
Rij=YpsXk—Xi—y; .. (A1)
RIJ = Rij — 1= RiR]
(2) Estimated parameters P,Q and T are given by
Q= (Rgz - R(/]lRllIiR}Q)
(Rgp — Ry  Ri7 Ryo)”~
P =(Ry, - QR121)R1111 - (A2)

T= (Ro —QRy — PR;)

The covariance coefficient U is estimated as a
matrix square root U = vV where

V= 73 ———(Roo — QRgo — PRyy — TRY)

(3)
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