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A new multi-layer artificial neural network learning algorithm based on pattern search method is proposed.
The learning model has two phases-a pattern search phase, and a local minimum-—escaping phase. In the
pattern search phase, our method performs local search iteratively and minimize the error measure function
along with the set of descent directions of the error measure directly and finds the nearest minima efficiently.
When the network gets stuck in local minima, the local minimum-escaping phase attempts to fill up the
valley by modifying temperature parameters in ascent direction of the error measure. Thus, the two phases
are repeated until the network gets out of local minima. The learning model is designed to provide a very
simple and effective means of searching the minima of objective function directly without any knowledge of
its derivatives. We test this algorithm on benchmark problems, such as exclusive-or (XOR), parity, Arabic
numerals recognition, function approximation problems and a real world classification task. For all problems,
the systems are shown be trained efficiently by our method. As a simple direct search method, it can be

applied in hardware implementations easily.
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1. Introduction

It is well known that the training of multi-layer feed-
forward neural networks ® can be viewed as the opti-

mization of a criterion function from a set of input-

output pairs with respect to a set of parameters-the
weights and thresholds . In other words, it is a kind
of multidimensional minimization of the error measure
function. Minimizing the multi-layer neural network er-
ror measure function in realistic problems is a difficult
task since many layers, the multitude of training pat-
terns and the variety of categories cast a very complex
landscape with wide plateaus and narrow valleys ®.
Since the solution to this problem is NP (Nondeter-
ministic Polynomial)-complete, no direct algorithm is
possible @ & Therefore, gradient descent approaches,
such as the Backpropagation model are most widely used
and effective algorithms for training feed-forward neural
networks  ®. The Backpropagation algorithm itera-
tively adjusts the network parameters (all weights and
thresholds) to minimize the error measure function us-
ing a gradient descent technique. Generally speaking,
methods that use derivatives are efficient. However some
problems correspond to the error measure functions that
by nature are non-differentiable or difficult to compute.
Furthermore, they are usually difficult for hardware im-
plementations for they need analog multipliers and other
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analog computations. Hence these methods will not
work in hardware manner . In addition, due to the
highly nonlinear modeling power of such networks, the
learned function may oscillate abruptly between various
training data. This is clearly undesirable for function
approximation ®.

Pattern search methods are a class of direct search
methods for nonlinear optimization proposed by Hooke
and Jeeves . Since the introduction of the original pat-
tern search methods, they have remained popular with
users due to their simplicity and the fact that they work
well in practice on a variety of problems . Although
the pattern search method has been an established ap-
proach in the field of optimization, it has never been
employed in MLP (Multi-Layer Perceptron) training be-
fore. Based on the pattern search method, we proposed
a learning method for multi-layer artificial neural net-
works “V. The pattern search based training procedure
could render the procedure efficient and robust and pro-
vided a very simple and effective means of searching
the minima of objective function directly without any
oscillation between training data. However, as a local
search method, the pattern search method may often
converge to a local minimum. In this paper, in order
to avoid the local minimum problem, we propose an ef-
ficient means of helping the network escape from local
minima by modifying temperature parameters to make
the error measure ascend in the temperature parameter
space after the pattern search descends into a minimum
that achieves insufficient accuracy in weight space. We
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apply the algorithm to a diverse set of problems, includ-
ing ezclusive-or (XOR), parity problems, Arabic numer-
als recognition, function approximation problems and
classification of radar returns from the ionosphere task.
The simulation results show that our method can train
multi-layer neural networks effectively and improve the
pattern search method much.

2. Learning Algorithm

Figure 1 is a flowchart of the proposed learning al-
gorithm. We can see from-the flowchart that our al-
gorithm consists of two phases. Phase I is the pattern
search phase in weight space and Phase Il is the local
minimum-escaping phase in the temperature parameter
space.

2.1 Pattern Search Phase A multi-layer feed-
forward artificial neural network ™ usually has one out-
put layer and one input layer with one or more hidden
layers. Each layer has a set of units, nodes or neurons.
Each neuron has a threshold. It is usually assumed that
each.layer is fully connected with an adjacent layer with-
out direct connections between layers that are not con-
secutive. Fach connection has a weight.

The input of each unit in. a layer (except input layer)
is given by ‘

n@fpj = ijiopi‘"l" Qj ...................... (1)
2

where net,; is the net input to unit j produced by the
presentation of pattern p, wj; is is the weight from unit
i to unit 7, 6; is a threshold of the unit j and ojis the

output value of unit 7 for pattern p. The output of unit -

j for pattern p is specified by

where f(z) is a semilinear activation function that is
differentiable and nondecreasing.

The Backpropagation algorithm @ tries to find a set
of weights and thresholds that minimizes an overall error
measure F,
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where p indexes over all the patterns in the training set.
E, is defined by

where t,; is target value (desired output) of the j-th
component of the output pattern for pattern p and op;
is the actual output of the j-th unit produced by the
presentation of input pattern p, and j indexes over the
output units. ‘

The Backpropagtion algorithm iteratively adjusts the
network parameters (weights and thresholds) to mini-
mize the error measure function (Eq.4) using a gradi-
ent descent technique. Therefore it needs to compute
the differentials of the error measure, activation func-
tion and their analog multiplications.

Since the objective of training is to adjust all pa-
rameters so as to minimize the sum of squared resid-
uals, we consider this unconstrained optimization prob-
lem of minimizing a continuously differentiable function
E : R® — R, without any knowledge of its derivatives,
and without any means of approximating them.

So for the multi-layer neural networks, we can define
a vector X whose elements include all adaptable param-
eters (weights between all layers and thresholds of every
neuron):

X = [wu,wlg,...,wij...

Then, the error measure F can be written as

E = B(X) e (6)
Then we can iteratively adjust X to minimize the func-
tion F(X).

- First, the search starts at an initial point Xy and
moves along n directions. n denotes the number of ele-
ments of vector X. Then, we can define the h-th direction
vector at iteration &:

e%:[q,.“70’£70,_._,%T_ ................... (7)

The sequence of iterations Xg, X1,...,Xg...in R™ is
produced as follows: for & > 0 , iteration £ is initiated
with X € R™ , and aims to find a new point along the
direction ef, (h=1,...,n), such that E(Xy + Agel) <
E(Xy) or E(Xp—Arel) < E(Xg), (h=1,...,n), where
Ay, is the step size at iteration k. ‘

If such a point is found, then the iteration is declared
successful, and the next iterate is Xzy1 = Xp + Akeg
If no such
point is found, then the iteration is declared unsuc-
cessful, and the next iteration is initiated at the same
point Xy 1 = Xi. The step size parameter Apyq is re-
duced to bAg , where 0 < b < 1 is a constant over all
iterations. The initial vector Xg and the step size Ag
are given.

The detailed learning algorithm can be described as
following rules:



Step 1. Initialize the vector X (weights and thresh-
olds) and other parameters:
Generate a vector Xy (the weight and threshold vec-
tor) randomly and set temperature parameters to 1.0.
Set 0r1,0L2,--,0Ln,0R1,0R2,---,0rRn = LNy > 0,
where § is the move step associated with each weight
and threshold.
Set constant @ > 1 , constant b € (0,1), and small
constant €. > 0. :
Let Vi = X0,k =0,h = 1.
Step 2. Search a new vector with lower error func-
tion:
For h=1 to n (that is for all weights and thresholds),
carry out:
If E(Yh + 6Rh@h) < E(th)7 then
Y =Y, 4 drpen,

else {

Orn = bORn,

if E(Yh — 5Lh€h) < E(Yh), then

Yoy =Y, —0rnen,
else Yoyr1 =Yy, drn = bdpn.

Step 3. Adapt the vector X (weights and thresholds):
If BE(Ypy1) < E(Xy), then {
set the new vector Xpq1 = Y, 11,
Yi=Xp1 +a(Xpqe1 — Xi), -

else{
set the new vector Xp11 = Xk ,
Y1 = X,
b
k=k+1,h=1.

Step 4. Estimate stop conditions of pattern search:
If B(Xkr1) <&, then {
stop the pattern search at point X1y (the
training is considered to be successful.)
}
else if training reaches the upper limit epochs,
stop search at point X
(the training is considered to be unsuccessful);
else‘ifall ) (that is 5[,1, 5L2, ey (SLn, 5R15 5R2’ ..
< & then ‘
go to the local minimum-escaping phase
(the training is considered to get trapped in a
local minimum).
else go to Step 2.
¥
where £ is a preselect error criterion; € > 0 is a prese-
lect small constant, and one epoch corresponds to one
modification of all weights and thresholds.
In this phase, our method performs local search iter-
-atively and minimize the error measure function along
with the set of descent directions directly. FEach adap-
tive parameter has its own learning rate. If it finds a
new minimum, then it moves to the new point with
lower error. If it fails to produce a decrease, the
search step is reduced by a certain proportion. This
search continues until the search step § gets sufficiently
small, thus ensuring convergence to a minimum @ 0,
whether local or global. In our method, if all search

then

., 0Rn)
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steps 611,052, ---,0Ln,0R1,0R2, .- .,0Rn < £ , Where € is
a small constant, for example, 0.01, and the resulting
error measure is larger than the error criteria, the train-
ing is considered to get trapped in a local minimum.
Weights and thresholds cannot be updated and training
is stopped. To help it escape from the local minimum
and converge to a global minimum, the method will start
the local minimum-escaping phase.

2.2 Local Minimum-escaping Phase Usually,
the activation function of unit j is given by a sigmoid
function f;(x) with the “temperature” parameter T}

fj(x) — % ........................... (8)
l4+e %

where T is the temperature parameter of neuron j. The
“temperature” parameter 7} is usually set to 1.0 and not
changed by the learning rule. However, there is evidence
suggesting that the nervous system has mechanisms that
modulate the neural response function in a manner simi-
lar to “temperature” parameter or “gain” (the reciprocal
of “temperature” parameter). Servan-Schreiber, Printz
and Cohen ** proposed that a “temperature” parame-
ter can help explain the effect of biogenic monoamines,
a type of neurotransmitter associated with neural re-
sponsiveness modulation. They used this parameter in
Backpropagation networks to simulate phenomena asso-
ciated with catecholamine manipulations. There is also
evidence that these animes play an important role in the
modulation of learning .

In our method, the error measure is also considered
as a function of the “temperature” parameters of neu-
rons. - The “temperature” parameter T; of each node
is updated in a manner analogous to the way weights
and thresholds using to make the error measure increase.
Therefore we can increase intentionally the error mea-
sure by modifying the temperature parameters in the
ascent directions of the error measure in the tempera-
ture parameter space and drive the network out of the
local minimum.

Here suppose that a vector V ='[I1,...,T, ..., Tn]”
whose elements correspond to the temperature param-
eters of neurons, where m denotes the number of ele-
ments of vector V. Similarly, the search starts at an
initial point and moves along m directions. Then the
j-th search direction is:

€j

Since for the temperature vector V, the modification
requires the change of the temperature to be in the di-
rection opposite to the weights and thresholds, we take
following rules:

Step 1. Initialize the vector V (temperature param-

eters) and other Parameters:

Set base vector Vp to current values of temperature

parameters.

Set change step AT = ATy > 0.

" Set constant 8 > 1.0, and constant v > ATy .

Set Uy =V, k=0,5=1.

IEEJ Trans. EIS, Vol.124, No.3, 2004



Two-Phase Pattern Search-based Learning Method

Step 2. Search new temperature vector with larger
error function:
For j=1 to m, do:
If E(U; + ATe;) > E(U;), then
Ujpq = Uj + ATej,
else {

if B(U; — ATe;) > E(Uj), then

Uj+1 = Uj - ATej,
else Uj.|_1 = Uj.

Step 3. Adapt the vector V (temperature parame-
ters):
If B(Up+1) > E(Vy), then {
set the new vector V41 = Unt1,
Ur = Viyt,
)
- else{
set the new vector Viy1 = Vi ,
increase the change step AT = SAT,

Uy = Vi
t
k=k+1,j=1

Step 4. Estimate Stop Conditions of Local Minimum-
Escaping:
If AT > ~, then {
set 011,012, +10Ln, O0R1,0R2;s - - - 0Rn = Ao,
return to pattern search phase with new temper-
ature parameters and start pattern search with cur-
rent X vector.
}
else go to Step 2.

In the local minimum-escaping phase, we iteratively
adjust the temperature parameters to increase the error
measure using a simple direct search technique to help
the network escape from local minima.

In order to explain simply how the proposed algorithm
helps a network escape from a local minimum, we use a
two-dimensional graph of an error measure of a neural
network with a local minimum and a global minimum,
as shown in Fig.2 (a). The vertical axis represents the
error produced by the network corresponding to some
states in weight space on the horizontal axis (to facil-
itate understanding, it is expressed in one dimension).
The initial network defines a point (e.g., point A) on
the slope of a specific “valley”, the bottom of this valley
(point B) is found by the pattern search based error min-
imization in the weight space (Fig.2 (b))—Phase I. Then
the error measure is evaluated. If the error measure is
less than an error criterion, then stop. If the network has
larger error values than the error criteria, go to Phase
II. Phase II tends to increase the error measure in the
temperature space. After the local minimum-escaping
phase (Phase IT), the error measure at point B is raised,
and then point B becomes a point at the slope of the
“valley” in weight landscape again (Fig.2 (c)). Then
the pattern search phase seeks a new minimum (Point
C) in weight landscape (Fig.2 (d)).

Thus, the repeats of the Phase I in weight space and
the Phase II in the temperature space may result in a
movement out of a local minimum as shown in Fig. 2
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Fig.2. The concept figure of the relationship be-
tween the error measure and the weight space.

(&)(®):

As can be seen, our method performs local search iter-
atively and minimizes the error measure function along
with the set of descent directions directly. With the lo-
cal searching, it can find the nearest minima efficiently.
Once the network becomes trapped in a local minimum,
the local minimum-escaping phase can help the network
escape from this “valley”, and converge to the global
minimum.

As we all know, the local search methods often suf-
fer from the local minima problem. Since they try to
iteratively update the weights for decreasing the error
function, they cannot escape from the local minima by
themselves. Numerous approaches ¥ ¢ have been pro-
posed, such as the simulated annealing method, modify
the learning model in order to help the network escape
from local minima. The basic idea of these methods is
adding a random factor to the model. Therefore, oc-
casional increase of error function is allowed during the
training process. However, the random perturbations of
the search direction and ’various kinds of stochastic ad-
justment to the current set of weights’ are not effective at
enabling network to escape from local minima and they
may take so much time to make the network fail to con-
verge to a global minimum within a reasonable number
of iterations *”. To help the network escape from the
local minima, our proposed method also increases the
error function intentionally by a deterministic method.
If error function is increased enough, the local minimum
valley will be filled and leveled up. The network is ex-
pected to escape from the local minima and converge to
the global minimum eventually.

The analysis of convergence of the pattern search
method has been given by R.M.Lewis et al “?. The



convergence is guaranteed. Both phases of our proposed
method are based on the pattern search method. Addi-
tionally, since the temperature parameter update causes
only the changing of slope of activation function, the
convergence in weight space of our method can be guar-
anteed.

Moreover, neither explicit estimate of the derivative
nor anything like a Taylor’s series appears in our pro-
posed method. This makes algorithm useful in situa-
tions where derivatives are not available or difficult to
get. Purthermore, the learning is performed by simply
changing vector by a small positive or negative constant,
and accepting the change if it produces a desired result.
Therefore, the algorithm is extremely simple to be spec-
ified and be implemented in hardware applications.

3. Simulations

In order to demonstrate the effectiveness of the pro-
posed learning algorithm, a large number of simulations
were performed for experimental purposes. We com-
pared the results to the original pattern search method
without local minimum-escaping phase and those of the
typical gradient descent method - the Backpropagation
algorithm and the global optimization method - the sim-
ulated annealing method, because they are the most
popular and effective learning methods for neural net-
works ¥ . In our simulations, the weight update rule
typically used in the Backpropagation algorithm is given
by

OF,
Apwji(n +1) = *an{n_
it

where 7 is called the learning rate, and « is called the
" momentum term parameter that determines the effect of
past weight changes on the current weight changes. Both
two parameters were chosen properly based on many
trials and differently according to different complexities
of problems. The process of the simulated annealing
method was based on Ref.(4) and the same parameters
as in Ref.(4) were used in our simulations.

Since the proposed method and the pattern search
method have a number of parameters in common (such
as the constants a, b and initial change step Ay), these
parameters were all set to the identical value for all ex-
amples. Since neural network training is a rather com-
plex task, the increase constant ¢ and decrease constant
b were all set to be around 1.0 to avoid any violent os-
cillation during training. For our proposed method and
the original pattern search method, the constants a, b
and Ag were set to 1.0, 0.99 and 0.1, respectively. Small
additional parameters were introduced in our proposed
method. To make our proposed method be a general
training method, these parameters of our method should
not be affected by individual problem too much. There-
fore, the same values of these parameters were used for
all examples, although there may be more suitable val-
ues for each problem. Since it is difficult to set the val-
ues theoretically, we have chosen these parameters by
trials as following: small constant e = 0.01 and the ini-
tial temperature parameters were all set to 1.0; for lo-

cal minimum-escaping phase, ATy = 0.1, 8 = 1.5 and
v = 1.0. As will be shown in following simulation results
that these parameters were well suited for the different
types of problems.

3.1 Ezxclusive-or (XOR) Problem It is use:
ful to begin with the exclusive-or problem since it is the
classic problem requiring hidden units and since many
other difficult problems involve an exclusive-or as a sub-
problem . A simple architecture (2-2-1 network) with
one hidden layer containing two hidden neurons and no
direct connections from input to output was used to
learn the ezclusive-or problem.

To investigate the training processing of a neural
network by our method, a typical learning curve of
ezclusive-or problem obtained from our method is shown
in Fig.3, in which one epoch corresponds to one modi-
fication to all parameters (all weights and thresholds).
Initially the weight vector was set randomly from -1 to 1
(time=ty). After the first pattern search learning for 72
epochs (time=t), the error measure £ decreased from
0.517 to 0.252 and got stuck in a local minimum. Then
the local minimum-escaping learning (Phase IT) was per-
formed and the error measure was increased from 0.252
to 0.263 (time=t;). Then the network escaped from
the local minimum and converged to the global mini-
mum (time=t3) after the second pattern search. To ex-
plain how the network escaped from local minima more
clearly, it is useful to plot a scatter map of 2-class dis-
criminant function obtained by the network training.
Fig. 4 shows the simulation results that illustrate a typ-
ical progressive intermediate decision region during the
pattern search phase and the local minimum-escaping
phase. The two axes correspond to the two inputs to the
network. Samples from class 1 are represented by black
dots and samples from class 0 by white dots. As can
been seen, the correct decision regions for the ezclusive-
or problem were formed from' the initial one (Fig. 4 (a) .
time=ty), to a local minimum convergence (Fig. 4 (b)

. time=t;) and finally the global convergence (Fig. 4 (d)
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time=t3) after the local minimum-escaping learning at
point of time ¢5 (Fig. 4(c)).

As we all know that the initial values of weights and
thresholds affect the convergence of a learning algo-
rithm strongly. Therefore, to see the sensitivity of our
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Fig.3. The typical learning curves of our proposed
method for ezclusive-or problem.
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Fig.4. A typical progressive intermediate decision
region during the pattern search phase and the lo-
cal minimum-escaping phase. Samples from class
1 are represented by black dots and samplés from
class 0 by white dots.

method to initial settings, we generated initial weight
and threshold vectors randomly for the exclusive-or
problem in (-1,1), (-2,2),. .., (-10,10)—10 ranges respec-
tively. Every range includes 100 different weight vec-
tors. We performed the learning with the Backpropa-
gation algorithm, and our method, using these weights
and thresholds respectively. For the Backpropagation
algorithm, n was set to 1.0, and « was set to 0.8. To
give enough time for training, in all cases, training was
allowed for up to 5000 epochs. For all methods, one
epoch corresponds to one modification to all weights and
thresholds. The error criteria used for all tests was 0.01.
The success rates with different initial setting gained
by the Backpropagation algorithm, the original pattern
search method and our method are showed in Fig. 5.
The comparison results revealed that as the range of ini-
tial vectors grew larger, the success rate of the Backprop-
agation algorithm became worse and decreased drasti-
cally. However, the effect on our method was not so
severe—the success rates of our method does not change
significantly and keeps higher than the original pattern
search method. So it is clear that our method is more
robust than the Backpropagation algorithm and the lo-
cal minimum-escaping phase in our method can greatly
improve the success rate in convergence to the global
minimum. ‘

3.2 Parity Problem Another one of the most
popular tasks 'given a good deal of discussion is parity
problem, in which the output required 1 if the input
pattern contains an odd number of 1s and 0 otherwise.
The exclusive-or problem is a parity problem with input
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Fig.5. Comparison of networks with various ini-
tial settings.

patterns of size two . The parity problem is a very de-
manding classification task for neural networks to solve,
because the target-output changes whenever a single bit
in the input vector changes ® and N-parity training set
consists of 2V training pairs. We have tried a num-
ber of parity problems with input patterns ranging from
size four to seven for experimental purposes. An N-M-1 -
(N-input, M-hidden neurons and 1 output) architecture
was used for the N-bit parity problem. The numbers of
hidden units were selected from @9,

Since the initial values of weights affect the conver-
gence of a learning algorithm, it is reasonable to judge
each algorithm by the statistics obtained from multiple
runs. In our experiments, for each simulation of the
three algorithms on 4-bit, 5-bit, 6-bit and 7-bit parity
problems, 100 sets of different initial weights were ran-
domly generated from -1 to 1 to be used for training.
The Backpropagation algorithm, the simulated anneal-
ing method, the original pattern search method and our
method were used to train a network on a given prob-
lem, with all networks having identical starting weight
values. For the Backpropagation algorithm, 1 was set to
1.0, and « was set to 0.8. The error criteria used for all
parity problems was set to 0.01. The maximal number
of epochs is 30000 epochs.

Table 1 shows the simulation results of the three al-
gorithms on- these parity problems. The success rate of
convergence and average CPU time entries of the table
represent the rate and average CPU time of the con-
vergence runs. Because the training procedures of these
algorithms are different, it is difficult to give an iden-
tical definition of the iteration or training cycles. It
is more reasonable to use the uniform criterion—CPU
tirne instead of iteration number or the number of train-
ing cycles. The average CPU times are only the average
time for successful runs and the times for unsuccess-
ful convergence are not counted. This table shows that
the proposed learning algorithm is more reliable for diffi-
cult problems than both the Backpropagation algorithm
and the simulated annealing algorithm in terms of faster



Table 1. Simulation results for the parity problems.

N-bit | Network Algorithm Success Rate | Average CPU Time
(Millisecond)
Backpropagation algorithm 88% 7754.8
4-bit 4-6-1 SA method 97% 293965.9
Pattern search method 62% 676.8
Our method 84% 3440.7
Backpropagation algorithm 74% 53704.2
5-bit | 5-10-1 SA method 95% 2862956.3
Pattern search method 83% 4909.9
Our method 98% 14371.9
Backpropagation algorithm 10% 27555.1
6-bit 6-12-1 SA method 100% 30105990.0
Pattern search method 64% 14904.0
Our method 99% 17217.0
Backpropagation algorithm 3% 1058061.0
7-bit 7-14-1 SA method 0% -
Pattern search method 42% 121779.2
Our method 5% 1272801.6
learning and higher successful learning rates. Especially, T TN A O T (o e '
our algorithm worked much better than the Backprop- Hig ::” H T :l” H H ' H H " N
agation for larger problems. Although the simulated Ll k] HEHH o Him't] [
annealing method could do 100% at parity 6, it needed Fig.6. Input patterns of Arabic numerals recognition.

more epochs than 30000 to converge for parity 7. Then
the slow convergence resulted in the low success rate.

Furthermore, the training time of our method is longer
than that of the pattern search method because it has
the local minimum-escaping phase in order to escape
from a local minimum. But with our method the sys-
tems are shown to be capable of escaping from the pat-
tern search local minima and getting much better global
convergence.

3.3 Arabic Numerals Recognition Problem
Moreover, to show the effectiveness of our proposed al-
gorithm for some high-dimensional and practical prob-
lems, we applied our algorithm to a larger network that
is set up for a more artificial task—Arabic numerals
recognition. This task is a classical pattern classifica-
tion problem. Our simulation involved recognizing Ara-
bic numerals 0-9 in an 8 by 8 pixel input field (Fig.
6). In order to solve this problem, a relatively complex
architecture was employed. Figure. 7 shows the ba-
sic structure of the network we employed. Input layer
consisted of 64 units that were conceptualized as two-
dimensional patterns corresponding to 8 by 8 pixel nu-
meral array. . Hidden layer had 4 units, each of which
was fully connected to the 64 inputs. All hidden units
were then fully connected to all output units. The num-
ber.of output units was set to 10. Therefore, each
of the 10 output units corresponded to one of these
characters. That’s, 0000000001 — 0,0000000010 — 1,
* 0000000100 — 2,...,1000000000 — 9.

The error criteria used for all tests was 0.01. For
the Backpropagation algorithm, n=1.0, and a=0.8 were
used. All weights and thresholds were also initialized
from (-1.0, +1.0). Results of these simulations are pre-
sented in Table 2. The statistics in this table are based
on 50 trials of simulations. It can be seen from the
table that our method significantly outperformed the
Backpropagation algorithm and the simulated anneal-
ing method in both global optimization and convergence
speed.

848

10 output neurons

Fig.7. The architecture of the network to solve A
the Arabic numerals recognition problem.

Table 2. Simulation results for the Arabic numer-
als recognition problem.
Algorithm Success Rate | Average CPU Time
(Millisecond)
Backpropagation algorithm 90% 28493.6
SA method 0%
Pattern search method 96% 17078.0
Our method 98% 18884.7

3.4 Function Approximation Problem To
test the performance of the proposed method for some
problems whose outputs take real values such as func-
tion approximation or time-series prediction, we applied
our method to approximate a simple trigonometric func-
tion y = cos(z) . Because output range of network
is between 0 and 1, we changed the target function
to y = (cos(2z) + 1)/3. The cosine function training
set adopted here following Ref.(20)—requires network to
approximate the cosine function for a sample of 64 input
points chosen uniformly in the interval [0, ]. The train-
ing set is illustrated in Fig.8. The minimal “standard”

IEEJ Trans. EIS, Vol.124, No.3, 2004
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Fig.8. The training set with 64 samples of func-
tion y = (cos(2z) + 1)/3.

architecture capable of learning the cosine(x) training
set given in Fig.8 is 1-2-1 20 @1, )

For evaluating and investigating network training, a
testing set including 128 samples was created. It is ob-
tained by sampling from the input range [0, 7] at equal
interval. When testing network’s performance, the test-
ing sample was fed to network; the corresponding net-
work output can be compared with the desired output.
In order to demonstrate the behavior of network trained
by our method, we gave the results of approximating
during a typical training process as shown in Fig. 9. In
this figure, “target function” represents the original un-
derlying function to be approximated from the training
data provided and “approximated function” represents
the actual outputs of network produced by the testing
data. The network started with the pattern search phase
at an initial state (Fig. 9 (a)) until network found a
local minimum (Fig. 9(b)). It is obviously that the re-
sult of approximation was far from the target function

-at this state. After the local minimum-escaping phase
(Fig. 9(c)), network converged to the global minimum
(Fig. 9(d)) and achieved satisfied results.

We also generated statistic based on 100 trials in
the same way and compared results with those of the
Backpropagation algorithm and the simulated annealing
method. All weights and thresholds were initialized from
(-1.0, +1.0). The error criteria used for this problem was
0.01. The maximal number of learning epochs was set
to 5000 epochs for the Backpropagation algorithm, the
patter search method and our method, 30000 epochs for
the simulated annealing method. For the Backpropaga-
tion algorithm 7=0.5, =0.8 was used. It can be seen
from Table. 3, our method could gain more satisfied ap-
proximation performance than the original Backpropa-
gation algorithm, the simulated annealing method and
the pattern search method.

3.5 Ionosphere Data Finally we applied our
method to a realistic “real-world” problem: classifica-
tion of radar returns from theionosphere. The data set
was created by the Johns Hopkins University and ob-
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Table 3.
proximation problem.

Simulation results for the function ap-

Algorithm Success Rate | Average CPU Time
(Millisecond)
Backpropagation algorithm 75% 68791.3
SA method 0%
Pattern search method 97% 5101.6
100% 5945.7

Qur method

Table 4. Simulation results for the ionosphere
data classification problem.

Algorithm Success Rate | Average CPU Time
(Millisecond)
Backpropagation algorithm 44% 117110.0
SA method 0%
Pattern search method 14% 241312.0
Our method 88% 321985.0

tained .from **. We can refer the usage of this database
from Sigillito, V. G. et al ®.

This radar data was collected by a system in Goose
Bay, Labrador. This system consisted of a phased array
of 16 high-frequency antennas with a total transmitted
power on the order of 6.4 kilowatts. There were 34 at-
tributes used to represent the pattern. Each pattern be-
longed to two classes: “Good” or “Bad” radar returns
that were free electrons in the ionosphere. “Good” radar
returns that were represented by “0” in the experiment
were those showing evidence of some type of structure
in the ionosphere. “Bad” returns that were represented
by “1”were those that do not.

The database consisted of 351 data patterns. We used
first 200 instances for training, which were carefully split
almost 50% “Good” and 50% “Bad”. We used a'34-3-1
neural network model to solve this problem. The error
criteria used for this problem was 0.1. 7n=0.1, o=0.8
were set for the Backpropagation algorithm. We also
performed 100 trails for the backpropagation algorithm,
the simulated annealing method, pattern search method
and the proposed method. All weights and thresholds
were also initialized from (-1.0, +1.0). The simulation
results are shown in Table 4. The results demonstrated
that the proposed method was superior to the all other
three methods in network training. The results of the
simulated annealing method were obtained by perform-
ing simulation on computers for 24 hours.

4. Conclusions

This paper presented a new simple learning method
for multi-layer artificial neural networks based on the
pattern search method. The method consisted of
two phases: the pattern search phase and the local
minimum-escaping phase. The former performed lo-
cal search iteratively and minimize the error measure
function along with the set of descent directions of the
error measure directly and found the nearest minima
efficiently. When the network got stuck in local min-
ima, the local minimum-escaping phase attempted to
fill up the valley by modifying temperature parameters
in ascent direction of the error measure in order to help
the network escape from local minima and gain higher



y
1.0 1.0
09 0.9
g:: Target function 8:3
0.6 p Approximated function 3 - 0.6
0.5 o 0.5

“

T L T NP AN NN T N N N

Target function

F \\Approximated function o -

k) w

i

000204 060810121416 1.8

202224262830

X

@
y y
1.0 + 1.0
0.9 0.9
0.8 ) 038

Target function

0.7 ' 0.7
0.6 "+.. Approximated function e 0.6
05 F < 0.5

¢ LS ST S ¥ DU TIVEY S NN SR T S N 1

00020406081.01.2141.6182.0222426283.0
X

‘ (©)
Fig.9. Approximation

L

Target function

Approximated function

S N S Bl ) 72 TS TR T N T |

00020406081.012141618202224262830

X

(d)

results of function y = (cos(2z) + 1)/3 with our method. (a) Initial state of

network. (b) The network got struck into a local minimum. (c) After the local minimum-escaping
phase. (d) The network converged into the global minimum.

convergence to the global minimum. Because this ap-
proach was designed as a simple direct search method,
it could be applied in hardware implementations eas-
ily. Finally experimental results from an implementa-
tion of the model on exclusive-or, parity, Arabic nu-
merals learning, function approximation and the clas-
sification of radar returns from the ionosphere problems
showed that our algorithm could train the network effec-
tively. and significantly outperformed the original pat-
tern search method, Backpropagation algorithm, and
the simulated annealing method.
(Manuscript received July 2, 2002,

revised Sep. 26, 2003)
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